研究的是随机排列\(p\)具有性质\(A\)的概率
说实话,看到标题我首先想到的是那个\(1/e\)策略选伴侣/雇员的问题。。。
如果\(n!\)个排列都是等可能取出的话,那么不过还是计数问题,算概率再除以\(n!\)
实际中,可能会用到一些概率理论的技巧来方便解决问题
开胃菜
Example1
Let \(i\) and \(j\) be two distinct elements of \([n]\), and let \(p\) be a randomly chosen \(n\)-permutation. Then the probability that \(i\) and \(j\) belong to the same cycle of \(p\) is \(\frac{1}{2}\)
Example2
Let \(i, k \in[n],\) and let \(p\) be a randomly selected \(n\) -permutation. Then the probability that the entry \(i\) is part of a \(k\) -cycle of \(p\) is \(\frac{1}{n} ;\) in particular, it is independent of \(k .\)
Standard Young Tableaux SYT
定义
A Standard Young Tableau is a Ferrers shape on \(n\) boxes in which each box contains one of the elements of [n] so that all boxes contain different numbers, and the rows and columns increase going down and going to the right.
例子
入门材料
ams.org/notices/200702/whatis-yong.pdf
The Hooklength Formula
先对Young表中的hook定义
定义Young表中一个格子\(b\)的hook是右边和下边格子的集合(包括\(b\)),记作\(H_b\)
The size of $H_b $is called the hooklength of \(b\), and is denoted by \(h_b\).
the box \(b\) is called the peak of \(H_b\).
定理Hooklength Formula
Let \(F\) be any Ferrers shape on \(n\) boxes. Then the number of SYT of shape \(F\) is equal to
where the product is over all n boxes b of \(F\).
举例
The Frobenius formula
定理和例子
期望
方差标准差
应用-最长上升子序列
先空着