zoukankan      html  css  js  c++  java
  • BGF bivariate generating function 双变量生成函数

    定义

    BGF bivariate generating function

    形式变量\(z\)对应于下标\(n\),形式变量\(u\)对应于下标\(k\)

    BGF就是个二重求和

    image-20200823234343693

    horizonal GF 和 vertical GF

    image-20200823234516222

    例子

    组合数

    horizonal GF

    \[W_{n}(u):=\sum_{k=0}^{n}\left(\begin{array}{l} n \\ k \end{array}\right) u^{k}=(1+u)^{n} \]

    vertical GF (Ord case)

    \[W^{\langle k\rangle}(z)=\sum_{n \geq 0}\left(\begin{array}{l} n \\ k \end{array}\right) z^{n}=\frac{z^{k}}{(1-z)^{k+1}} \]

    vertical GF (Exp case)

    \[\sum_{n \geq 0}\left(\begin{array}{l} n \\ k \end{array}\right) \frac{z^{n}}{n!}=e^zz^k/k! \]

    OBGF

    先算行再算列,

    \[W(z, u)=\sum_{k, n \geq 0}\left(\begin{array}{l} n \\ k \end{array}\right) u^{k} z^{n}=\sum_{n \geq 0}(1+u)^{n} z^{n}=\frac{1}{1-z(1+u)} \]

    先算列再算行

    \[W(z, u)=\sum_{k \geq 0} u^{k} \frac{z^{k}}{(1-z)^{k+1}}=\frac{1}{1-z} \frac{1}{1-u \frac{z}{1-z}}=\frac{1}{1-z(1+u)} \]

    EBGF

    先算行再算列

    \[\widetilde{W}(z, u)=\sum_{k, n}\left(\begin{array}{l} n \\ k \end{array}\right) u^{k} \frac{z^{n}}{n !}=\sum(1+u)^{n} \frac{z^{n}}{n !}=e^{z(1+u)} \]

    第一类斯特林数

    vertical GF (Exp case)

    \[P^{\langle k\rangle}(z):=\sum_{n}\left[\begin{array}{l} n \\ k \end{array}\right] \frac{z^{n}}{n !}=\frac{1}{k !}(\mathbb{log}\frac{1}{1-z})^k \]

    EBGF

    先算列再算行

    \[\begin{aligned} P(z, u) &:=\sum_{k} P^{\langle k\rangle}(z) u^{k}=\sum_{k} \frac{u^{k}}{k !} L(z)^{k}=e^{u L(z)} \\ &=(1-z)^{-u} \end{aligned}\\ where\ L(z)=\mathbb{log}\frac{1}{1-z} \]

    间接求horizonal GF

    \[\mathbb{expand} \ \ P(z,u)=(1-z)^{-u},\\ P(z,u)=(1-z)^{-u}=\sum_{n \geq 0}\left(\begin{array}{c} n+u-1 \\ n \end{array}\right) z^{n} \]

    \[\mathbb{horizonal} \ GF \ \ \ \ P_n(u)=u(u+1)(u+2)...(u+n-1) \]

    image-20200823235205206

  • 相关阅读:
    windows上设置代理
    docker 代理
    windbg随笔
    win10自带ssh server使用
    centos7 最小安装后,编译配置redsocks
    cef chromium 编译
    C++中的单例模式
    delete NULL
    音视频通讯能力提供商
    云视频会议解决方案
  • 原文地址:https://www.cnblogs.com/yhm138/p/13551507.html
Copyright © 2011-2022 走看看