zoukankan      html  css  js  c++  java
  • 词性标注语料预处理实战

    此部分基于词性标注的数学表示后,针对给定的语料,做一些viterbi算法的一些预处理。

    给定的语料格式如下所示:

    it/PRP
    will/MD
    introduce/VB
    a/DT
    new/JJ
    incentive/NN
    plan/NN
    for/IN
    advertisers/NNS
    ./.
    

    其中每行是一个单词和其词性标注,用/分割,每个句子的结尾用./.作为结束标志。则基于上述说明,我们对训练语料进行预处理,代码如下所示:

    # 词性与对应id的词典对应关系,比如tag2id={"NNP":0, "VBG":1, ..., } id2tag={0:"NNP", 1:"VBG", ..., }
    tag2id, id2tag = {}, {}
    # 词与对应id的词典对应关系
    word2id, id2word = {}, {}
    # 读取训练文件,做预处理
    for line in open("traindata.txt"):
        items = line.split("/")
        word, tag = items[0], items[1].rstrip()  # 提取每一行里面的单词和词性
        if word not in word2id:
            word2id[word] = len(word2id)
            id2word[len(word2id)] = word
        if tag not in tag2id:
            tag2id[tag] = len(tag2id)
            id2tag[len(id2tag)] = tag
    
    M = len(word2id)  # 词典的大小, num of words in dictionary
    N = len(tag2id)  # 词性的种类个数, num of tags in tag set
    
    # print(tag2id)
    # print(id2tag)
    #
    # print(M)
    # print(N)
    
    # 基于上述处理,构建pi、A、B
    import numpy as np
    
    pi = np.zeros(N)  # pi标识每个词性出现在句子第一个位置的概率
    A = np.zeros((N, M))  # A[i][j]给定tag i,出现单词j的概率
    B = np.zeros((N, N))  # B[i][j]词性从状态i转移到j的概率
    
    # 计算pi 、 A 、B
    prev_tag = ""
    for line in open("traindata.txt"):
        items = line.split("/")
        # 获取单词和词性对应的id
        wordId, tagId = word2id[items[0]], tag2id[items[1].rstrip()]
        if prev_tag == "":    # 意味着句子的开头
            pi[tagId] += 1  # 计算每个开头词性出现的次数,后面再根据次数计算概率值
            A[tagId][wordId] += 1   # 计算该词性对应的单词出现的次数
        else:   # 如果不是句子开头
            A[tagId][wordId] += 1
            B[tag2id[prev_tag]][tagId] += 1 # 计算该词性出现时其上一个词性出现的次数
        if items[0] == ".":
            prev_tag = ""
        else:
            prev_tag = items[1].rstrip()
    
    # normalize
    pi = pi/sum(pi)
    for i in range(N):
        A[i] /= sum(A[i])
        B[i] /= sum(B[i])
    
    # print(pi)
    # print(A)
    # print(B)
    

    打印pi结果如下所示:

    [1.81324111e-01 0.00000000e+00 1.00049407e-02 3.33498024e-03
     3.95256917e-03 3.68083004e-02 1.11660079e-01 3.66847826e-02
     6.17588933e-04 3.81669960e-02 8.76976285e-03 5.18774704e-02
     6.02766798e-02 2.47035573e-04 2.17267787e-01 0.00000000e+00
     1.48221344e-03 6.05237154e-03 8.64624506e-04 2.47035573e-04
     0.00000000e+00 4.73073123e-02 0.00000000e+00 7.16403162e-03
     1.72924901e-03 2.09980237e-03 7.53458498e-02 6.36116601e-02
     2.59387352e-03 1.85276680e-03 5.92885375e-03 1.97628458e-03
     2.84090909e-03 0.00000000e+00 0.00000000e+00 2.71739130e-03
     5.92885375e-03 5.92885375e-03 9.88142292e-04 3.70553360e-04
     1.23517787e-04 0.00000000e+00 0.00000000e+00 1.85276680e-03
     0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
     0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
     0.00000000e+00 0.00000000e+00]
    

    通过上述处理后,我们可以得到矩阵A、pi、B,及在上节中我们说明的值。其中A是词性为 (t_i)的词(w_i)的概率,(pi)可以解释为开头的词性概率,B可解释为为词性(t_{i-1})到词性(t_i)转移的概率。

  • 相关阅读:
    扇入扇出的概念
    ISE Simulator综合后仿真 How do you run Post Synthesis Simulation in ISE Project Navigator?
    通信相关经典书籍
    the advantages of using SRL16 to make large delay
    Illegal redeclaration of module <glbl>.&Element index 2 into memp is out of bounds
    双口RAM
    twisted综述和reactor概述
    python os模块
    Twisted简单安装和rpc简单使用示例
    select, poll和epoll的区别
  • 原文地址:https://www.cnblogs.com/yhzhou/p/13340067.html
Copyright © 2011-2022 走看看