[转自 https://blog.csdn.net/liuker888/article/details/46848905#]
知识链接:
C++11 并发之std::atomic
本文概要:
1、成员类型和成员函数。
2、std::thread 构造函数。
3、异步。
4、多线程传递参数。
5、join、detach。
6、获取CPU核心个数。
7、CPP原子变量与线程安全。
8、lambda与多线程。
9、时间等待相关问题。
10、线程功能拓展。
11、多线程可变参数。
12、线程交换。
13、线程移动。
std::thread 在 #include<thread> 头文件中声明,因此使用 std::thread 时需要包含 #include<thread> 头文件。
1、成员类型和成员函数。
成员类型:
- id
- Thread id (public member type ) id
- native_handle_type
- Native handle type (public member type )
成员函数:
- (constructor)
- Construct thread (public member function ) 构造函数
- (destructor)
- Thread destructor (public member function ) 析构函数
- operator=
- Move-assign thread (public member function ) 赋值重载
- get_id
- Get thread id (public member function ) 获取线程id
- joinable
- Check if joinable (public member function ) 判断线程是否可以加入等待
- join
- Join thread (public member function ) 加入等待
- detach
- Detach thread (public member function ) 分离线程
- swap
- Swap threads (public member function ) 线程交换
- native_handle
- Get native handle (public member function ) 获取线程句柄
- hardware_concurrency [static]
- Detect hardware concurrency (public static member function ) 检测硬件并发特性
Non-member overloads:
- swap (thread)
- Swap threads (function )
2、std::thread 构造函数。
如下表:
- default (1)
- thread() noexcept;
- initialization(2)
-
template <class Fn, class... Args> explicit thread (Fn&& fn, Args&&... args);
- copy [deleted] (3)
- thread (const thread&) = delete;
- move [4]
- hread (thread&& x) noexcept;
(1).默认构造函数,创建一个空的 thread 执行对象。
(2).初始化构造函数,创建一个 thread 对象,该 thread 对象可被 joinable,新产生的线程会调用 fn 函数,该函数的参数由 args 给出。
(3).拷贝构造函数(被禁用),意味着 thread 不可被拷贝构造。
(4).move 构造函数,move 构造函数,调用成功之后 x 不代表任何 thread 执行对象。
注意:可被 joinable 的 thread 对象必须在他们销毁之前被主线程 join 或者将其设置为 detached。
std::thread 各种构造函数例子如下:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 #include<chrono> 4 using namespace std; 5 void fun1(int n) //初始化构造函数 6 { 7 cout << "Thread " << n << " executing "; 8 n += 10; 9 this_thread::sleep_for(chrono::milliseconds(10)); 10 } 11 12 void fun2(int & n) //拷贝构造函数 13 { 14 cout << "Thread " << n << " executing "; 15 n += 20; 16 this_thread::sleep_for(chrono::milliseconds(10)); 17 } 18 19 int main() 20 { 21 int n = 0; 22 thread t1; //t1不是一个thread 23 thread t2(fun1, n + 1); //按照值传递 24 t2.join(); 25 cout << "n=" << n << ' '; 26 n = 10; 27 thread t3(fun2, ref(n)); //引用 28 thread t4(move(t3)); //t4执行t3,t3不是thread 29 t4.join(); 30 cout << "n=" << n << ' '; 31 return 0; 32 } 33 34 运行结果: 35 Thread 1 executing 36 n=0 37 Thread 10 executing 38 n=30</span>
3、异步。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 void show() 5 { 6 cout << "hello cplusplus!" << endl; 7 } 8 int main() 9 { 10 //栈上 11 thread t1(show); //根据函数初始化执行 12 thread t2(show); 13 thread t3(show); 14 //线程数组 15 thread th[3]{thread(show), thread(show), thread(show)}; 16 //堆上 17 thread *pt1(new thread(show)); 18 thread *pt2(new thread(show)); 19 thread *pt3(new thread(show)); 20 //线程指针数组 21 thread *pth(new thread[3]{thread(show), thread(show), thread(show)}); 22 return 0; 23 }</span>
4、多线程传递参数。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 void show(const char *str, const int id) 5 { 6 cout << "线程 " << id + 1 << " :" << str << endl; 7 } 8 int main() 9 { 10 thread t1(show, "hello cplusplus!", 0); 11 thread t2(show, "你好,C++!", 1); 12 thread t3(show, "hello!", 2); 13 return 0; 14 } 15 运行结果: 16 线程 1线程 2 :你好,C++!线程 3 :hello! 17 :hello cplusplus!</span>
发现,线程 t1、t2、t3 都执行成功!
5、join、detach。
join例子如下:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 #include<array> 4 using namespace std; 5 void show() 6 { 7 cout << "hello cplusplus!" << endl; 8 } 9 int main() 10 { 11 array<thread, 3> threads = { thread(show), thread(show), thread(show) }; 12 for (int i = 0; i < 3; i++) 13 { 14 cout << threads[i].joinable() << endl;//判断线程是否可以join 15 threads[i].join();//主线程等待当前线程执行完成再退出 16 } 17 return 0; 18 } 19 运行结果: 20 hello cplusplus! 21 hello cplusplus! 22 1 23 hello cplusplus! 24 1 25 1</span>
总结:
join 是让当前主线程等待所有的子线程执行完,才能退出。
detach例子如下:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 void show() 5 { 6 cout << "hello cplusplus!" << endl; 7 } 8 int main() 9 { 10 thread th(show); 11 //th.join(); 12 th.detach();//脱离主线程的绑定,主线程挂了,子线程不报错,子线程执行完自动退出。 13 //detach以后,子线程会成为孤儿线程,线程之间将无法通信。 14 cout << th.joinable() << endl; 15 return 0; 16 } 17 运行结果: 18 hello cplusplus! 19 0</span>
结论:
线程 detach 脱离主线程的绑定,主线程挂了,子线程不报错,子线程执行完自动退出。
线程 detach以后,子线程会成为孤儿线程,线程之间将无法通信。
6、获取CPU核心个数。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 int main() 5 { 6 auto n = thread::hardware_concurrency();//获取cpu核心个数 7 cout << n << endl; 8 return 0; 9 } 10 运行结果: 11 8</span>
结论:
通过 thread::hardware_concurrency() 获取 CPU 核心的个数。
7、CPP原子变量与线程安全。
问题例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 const int N = 100000000; 5 int num = 0; 6 void run() 7 { 8 for (int i = 0; i < N; i++) 9 { 10 num++; 11 } 12 } 13 int main() 14 { 15 clock_t start = clock(); 16 thread t1(run); 17 thread t2(run); 18 t1.join(); 19 t2.join(); 20 clock_t end = clock(); 21 cout << "num=" << num << ",用时 " << end - start << " ms" << endl; 22 return 0; 23 } 24 运行结果: 25 num=143653419,用时 730 ms</span>
从上述代码执行的结果,发现结果并不是我们预计的200000000,这是由于线程之间发生冲突,从而导致结果不正确。
为了解决此问题,有以下方法:
(1)互斥量。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 #include<mutex> 4 using namespace std; 5 const int N = 100000000; 6 int num(0); 7 mutex m; 8 void run() 9 { 10 for (int i = 0; i < N; i++) 11 { 12 m.lock(); 13 num++; 14 m.unlock(); 15 } 16 } 17 18 int main() 19 { 20 clock_t start = clock(); 21 thread t1(run); 22 thread t2(run); 23 t1.join(); 24 t2.join(); 25 clock_t end = clock(); 26 cout << "num=" << num << ",用时 " << end - start << " ms" << endl; 27 return 0; 28 } 29 运行结果: 30 num=200000000,用时 128323 ms</span>
不难发现,通过互斥量后运算结果正确,但是计算速度很慢,原因主要是互斥量加解锁需要时间。
互斥量详细内容 请参考C++11 并发之std::mutex。
(2)原子变量。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 #include<atomic> 4 using namespace std; 5 const int N = 100000000; 6 atomic_int num{ 0 };//不会发生线程冲突,线程安全 7 8 void run() 9 { 10 for (int i = 0; i < N; i++) 11 { 12 num++; 13 } 14 } 15 int main() 16 { 17 clock_t start = clock(); 18 thread t1(run); 19 thread t2(run); 20 t1.join(); 21 t2.join(); 22 clock_t end = clock(); 23 cout << "num=" << num << ",用时 " << end - start << " ms" << endl; 24 return 0; 25 } 26 27 运行结果: 28 num=200000000,用时 29732 ms</span>
不难发现,通过原子变量后运算结果正确,计算速度一般。
原子变量详细内容 请参考C++11 并发之std::atomic。
(3)加入 join 。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 const int N = 100000000; 5 int num = 0; 6 7 void run() 8 { 9 for (int i = 0; i < N; i++) 10 { 11 num++; 12 } 13 } 14 int main() 15 { 16 clock_t start = clock(); 17 thread t1(run); 18 t1.join(); 19 thread t2(run); 20 t2.join(); 21 clock_t end = clock(); 22 cout << "num=" << num << ",用时 " << end - start << " ms" << endl; 23 return 0; 24 } 25 运行结果: 26 num=200000000,用时 626 ms</span>
不难发现,通过原子变量后运算结果正确,计算速度也很理想。
8、lambda与多线程。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 int main() 5 { 6 auto fun = [](const char *str) {cout << str << endl; }; 7 thread t1(fun, "hello world!"); 8 thread t2(fun, "hello beijing!"); 9 return 0; 10 } 11 运行结果: 12 hello world! 13 hello beijing!</span>
9、时间等待相关问题。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 #include<chrono> 4 using namespace std; 5 int main() 6 { 7 thread th1([]() 8 { 9 //让线程等待3秒 10 this_thread::sleep_for(chrono::seconds(3)); 11 //让cpu执行其他空闲的线程 12 this_thread::yield(); 13 //线程id 14 cout << this_thread::get_id() << endl; 15 }); 16 return 0; 17 }</span>
10、线程功能拓展。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 class MyThread :public thread //继承thread 5 { 6 public: 7 //子类MyThread()继承thread()的构造函数 8 MyThread() : thread() 9 { 10 11 } 12 //MyThread()初始化构造函数 13 template<typename T, typename...Args> 14 MyThread(T&&func, Args&&...args) : thread(forward<T>(func), forward<Args>(args)...) 15 { 16 } 17 void showcmd(const char *str) //运行system 18 { 19 system(str); 20 } 21 }; 22 int main() 23 { 24 MyThread th1([]() 25 { 26 cout << "hello" << endl; 27 }); 28 th1.showcmd("calc"); //运行calc 29 //lambda 30 MyThread th2([](const char * str) 31 { 32 cout << "hello" << str << endl; 33 }, " this is MyThread"); 34 th2.showcmd("notepad");//运行notepad 35 return 0; 36 } 37 运行结果: 38 hello 39 //运行calc 40 hello this is MyThread 41 //运行notepad</span>
11、多线程可变参数。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 #include<cstdarg> 4 using namespace std; 5 int show(const char *fun, ...) 6 { 7 va_list ap;//指针 8 va_start(ap, fun);//开始 9 vprintf(fun, ap);//调用 10 va_end(ap); 11 return 0; 12 } 13 int main() 14 { 15 thread t1(show, "%s %d %c %f", "hello world!", 100, 'A', 3.14159); 16 return 0; 17 } 18 运行结果: 19 hello world! 100 A 3.14159</span>
12、线程交换。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 int main() 5 { 6 thread t1([]() 7 { 8 cout << "thread1" << endl; 9 }); 10 thread t2([]() 11 { 12 cout << "thread2" << endl; 13 }); 14 cout << "thread1' id is " << t1.get_id() << endl; 15 cout << "thread2' id is " << t2.get_id() << endl; 16 cout << "swap after:" << endl; 17 swap(t1, t2);//线程交换 18 cout << "thread1' id is " << t1.get_id() << endl; 19 cout << "thread2' id is " << t2.get_id() << endl; 20 return 0; 21 } 22 运行结果: 23 thread1 24 thread2 25 thread1' id is 4836 26 thread2' id is 4724 27 swap after: 28 thread1' id is 4724 29 thread2' id is 4836</span>
两个线程通过 swap 进行交换。
13、线程移动。
例如:
1 <span style="font-size:12px;">#include<iostream> 2 #include<thread> 3 using namespace std; 4 int main() 5 { 6 thread t1([]() 7 { 8 cout << "thread1" << endl; 9 }); 10 cout << "thread1' id is " << t1.get_id() << endl; 11 thread t2 = move(t1);; 12 cout << "thread2' id is " << t2.get_id() << endl; 13 return 0; 14 } 15 运行结果: 16 thread 17 thread1' id is 5620 18 thread2' id is 5620</span>