zoukankan      html  css  js  c++  java
  • kuangbin专题一:H题,POJ3414:Pots

    POJ3414:Pots
    kuangbin专题一:H题
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 18771   Accepted: 7948   Special Judge

    Description

    You are given two pots, having the volume of A and B liters respectively. The following operations can be performed:

    1. FILL(i)        fill the pot i (1 ≤ i ≤ 2) from the tap;
    2. DROP(i)      empty the pot i to the drain;
    3. POUR(i,j)    pour from pot i to pot j; after this operation either the pot j is full (and there may be some water left in the pot i), or the pot i is empty (and all its contents have been moved to the pot j).

    Write a program to find the shortest possible sequence of these operations that will yield exactly C liters of water in one of the pots.

    Input

    On the first and only line are the numbers A, B, and C. These are all integers in the range from 1 to 100 and C≤max(A,B).

    Output

    The first line of the output must contain the length of the sequence of operations K. The following K lines must each describe one operation. If there are several sequences of minimal length, output any one of them. If the desired result can’t be achieved, the first and only line of the file must contain the word ‘impossible’.

    Sample Input

    3 5 4

    Sample Output

    6
    FILL(2)
    POUR(2,1)
    DROP(1)
    POUR(2,1)
    FILL(2)
    POUR(2,1)
    题意:给出两个杯子 容量分别为 a, b, 对两个杯子进行六种操作 FILE(1) FILE(2) DROP(1) DROP(2) POUR(1,2) POUR( 2,1)
       问最少操作多少次 可以得到 水量c (c<max(a,b) ) 并且输出 操作过程 否则 输出 impossible
    思路:看到最少操作多少次 第一思路是 广度优先搜索 , 但是本题要求输出 操作过程 ,所以不用广搜 用深搜 ,搜索的同时记下路径
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #include <limits>
    using namespace std ;
    
    #define maxn 120
    bool visit[maxn][maxn] ;
    int path[maxn*100] , result[maxn*100] ;
    bool flag ;
    int step ;
    int a , b , c ;
    
    void DFS(int x , int y , int step2 ){
        if(step2 > step){//肯定不是最优解  排除 
            return; 
        }
        if(x==c||y==c){
            if(step2 < step ){ // 逐渐得到最优解 
                flag = true ; // 找到解 
                step = step2 ; 
                for(int i=0 ; i< step ; i++){ //存放最优解路径 防止接下来的搜索改变最优路径 
                    result[i] = path[i] ; 
                }
            }
            return;
        }
        // 六种操作 
        // FILE(1)
        if(x<a && !visit[a][y]){
            visit[a][y] = 1 ;
            path[step2] = 1 ; 
            DFS(a , y , step2+1) ;
            visit[a][y] = 0 ;  
        } 
        // FILE(2)
        if(y<b &&!visit[x][b]){
            visit[x][b] = 1 ; 
            path[step2] = 2 ; 
            DFS(x , b , step2 + 1) ; 
            visit[x][b] = 0 ;  
        }
        // DROP(1)
        if(x>0 && !visit[0][y]){
            visit[0][y] = 1 ; 
            path[step2] = 3 ; 
            DFS(0 , y , step2 + 1 ) ; 
            visit[0][y] = 0 ; 
        } 
        // DROP(2)
        if(y>0 && !visit[x][0]){
            visit[x][0] = 1 ; 
            path[step2] = 4 ; 
            DFS(x , 0 , step2 + 1 ) ; 
            visit[x][0] = 0 ; 
        }
        int min_num = 0 ; 
        // POUR(1,2)
        min_num = min(x , b-y) ; 
        if(x>0 && y<b && !visit[x-min_num][y+min_num]){
            visit[x-min_num][y+min_num] = 1 ; 
            path[step2] = 5 ; 
            DFS(x-min_num , y+min_num , step2 + 1 ) ; 
            visit[x-min_num][y+min_num] = 0 ; 
        }
        // POUR(2,1) 
        min_num = min(y , a - x ) ; 
        if(y>0 && x<a && !visit[x+min_num][y-min_num]){
            visit[x+min_num][y-min_num] = 1 ; 
            path[step2] = 6 ; 
            DFS(x+min_num , y-min_num , step2+1) ;
            visit[x+min_num][y-min_num] = 0 ;  
        }
        return;
    }
    
    int main() {
    
        while(~scanf("%d%d%d" , &a , &b , &c)) {
            memset(visit , 0 , sizeof(visit)) ;
            visit[0][0] = 1 ;
            flag = false ; 
            step = INT_MAX ; 
            DFS(0 , 0 , 0 ) ;
            
            if(flag) {
    
                printf("%d
    " , step) ;
                for(int i= 0 ; i<step ; i++) {
                    // 由最优解操作顺序编号输出顺序操作过程 
                    if( result[i] == 1 ) {
                        printf("FILL(1)
    ") ;
                    }
                    if(result[i] == 2) {
                        printf("FILL(2)
    ") ;
                    }
                    if(result[i] == 3) {
                        printf("DROP(1)
    ") ;
                    }
                    if(result[i] == 4) {
                        printf("DROP(2)
    ") ;
                    }
                    if(result[i] == 5) {
                        printf("POUR(1,2)
    ");
                    }
                    if(result[i] == 6) {
                        printf("POUR(2,1)
    ");
                    }
    
                }
            } else {
                printf("impossible
    ") ;
            }
    
        }
    
        return 0 ;
    }
  • 相关阅读:
    MySQL约束条件
    MySQL基本数据类型
    MySQL基本sql语句,存储引擎,创建表的语法,严格模式
    MySQL环境变量配置及系统服务制作,设置及修改密码,跳过授权表并重置密码,统一编码
    数据库及SQL语句由来,重要概念介绍,MySQL安装,启动服务端及连接,初识SQL语句
    图书管理系统前端页面搭建
    Bootstrap组件2
    c#版工作流之流程发起(3)
    C#版工作流运行机制(1)
    c#版本工作流引擎状态机(2)
  • 原文地址:https://www.cnblogs.com/yi-ye-zhi-qiu/p/7643107.html
Copyright © 2011-2022 走看看