zoukankan      html  css  js  c++  java
  • kuangbin专题五:C

    Today is Ignatius' birthday. He invites a lot of friends. Now it's dinner time. Ignatius wants to know how many tables he needs at least. You have to notice that not all the friends know each other, and all the friends do not want to stay with strangers.

    One important rule for this problem is that if I tell you A knows B, and B knows C, that means A, B, C know each other, so they can stay in one table.

    For example: If I tell you A knows B, B knows C, and D knows E, so A, B, C can stay in one table, and D, E have to stay in the other one. So Ignatius needs 2 tables at least.

    InputThe input starts with an integer T(1<=T<=25) which indicate the number of test cases. Then T test cases follow. Each test case starts with two integers N and M(1<=N,M<=1000). N indicates the number of friends, the friends are marked from 1 to N. Then M lines follow. Each line consists of two integers A and B(A!=B), that means friend A and friend B know each other. There will be a blank line between two cases.
    OutputFor each test case, just output how many tables Ignatius needs at least. Do NOT print any blanks.
    Sample Input
    2
    5 3
    1 2
    2 3
    4 5
    
    5 1
    2 5
    Sample Output
    2
    4
    题意:A 认识 B , B 认识 C , 则 A B C 可以坐在一张桌子上 , 所有相互认识的人组成一个集合 一个集合的人坐一张桌子
       问 需要准备多少张桌子 (有多少个集合)。
    思路:并查集 模板题目。
    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    
    using namespace std ; 
    #define maxn 5000
    int n , m ; 
    int num1 , num2 ; 
    int t ; 
    int father[maxn] ; 
    bool visit[maxn] ; 
    
    void init(){
        for(int i=1 ; i<=n ; i++){
            father[i] = i ; 
        }
        return;
    }
    
    int find(int x){
        if(x!=father[x]){
            father[x] = find(father[x]) ; 
        }
        return father[x] ; 
    }
    
    void Union_set(int x , int y){
        int rootx = find(x) ; 
        int rooty = find(y) ; 
         
        if(rootx != rooty){
            father[rooty] = rootx ; 
            
        }
        return;
    }
    
    int check(){
        memset(visit , false , sizeof(visit)) ; 
    
        int result = 0 ; 
        for(int i=1 ; i<=n ; i++){
            visit[find(i)] = true ; 
        }
        for(int i=1 ; i<=n ; i++){
            if(visit[i]){
                
                result ++ ; 
            }
        }
        return result ; 
    }
    
    int main(){
    
        scanf("%d" , &t) ; 
        while(t--){
            
            scanf("%d %d" , &n , &m) ; 
            init() ;
            for(int i=1 ; i<=m ; i++){
                scanf("%d %d" , &num1 , &num2) ; 
                Union_set(num1 , num2) ; 
            }
    
            int result = check() ; 
          
            printf("%d
    " , result) ; 
        }
        return 0 ; 
    }
    View Code
  • 相关阅读:
    P1582 倒水 (二进制)
    P2014 选课 (树形动规)
    多项式前置技能——复数
    P3694 邦邦的大合唱站队 (状压DP)
    P1754 球迷购票问题 (卡特兰数,递推)
    [SCOI2003]字符串折叠 (区间DP)
    [SDOI2008]仪仗队 (欧拉函数)
    4-字符串
    3.输出,输入,基本数据类型
    2.栈,堆,寄存器的理解
  • 原文地址:https://www.cnblogs.com/yi-ye-zhi-qiu/p/8000616.html
Copyright © 2011-2022 走看看