先上图:
现在要找到地点V1到其余各个地点的最短路径(图中数字的单位默认为km.)。有一个原则是:永远找最小,确保无更小。
第一步:v1->v1,v1->v2,...v1->v7的距离用一维数组dis[0],dis[1],dis[2],...dis[6]表示。初始化数组:dis=[0 50 inf inf 30 inf inf];
第二步:找到dis数组中的最小值(注意不算v1->v1=0),它是dis[4]=30;这个距离就是v1->v5的最小距离了,因为所有的距离都是正数,如果你从v1出发,通过其他顶点绕路绕到v5,那总距离肯定大于30,因为30+(一个大于0的数)肯定大于30.此时,找到了v1->v5的最短路径;
第三步:把顶点v5置为true,代表顶点v5已被访问;
第四步:看v5通往里,从图上可以看到v5通往v3和v7,v5->v3的距离是60,v5->v7的距离是120,所以通过v5中转到v3和v7后,v1->v3的距离变成30+60=90,v1->v7的距离变成30+120=150;这对dis数组中保存的v1到其它各个顶点的距离产生了影响, 此时就用更小的值去更新dis数组中的值。更新后的dis数组是:dis=[0 50 90 inf 30 inf 150].(注:inf代表无穷大)
第五步:找dis数组中除去v1->v5=30这个值之后的最小值,它是v1->v2=50,找到后把顶点v2置为ture.
第六步:从v1出发,通过v2中转,看v2会到达哪里。可以看到,v2->v3=20,这时更新dis数组中v1->v3值,把90更新成70.此时数组dis=[0 50 70 inf 30 inf 150].
第七步:重复第5步,找排除掉顶点是ture的值后,剩余的数的最小值,它是v1->v3=70,把顶点v3置为true.
第八步:从v1出发,通过v3中转,看v3会到达哪里。可以看到,v3->v7=10,这时更新dis数组中v1->v7值,把150更新成80.此时数组dis=[0 50 70 inf 30 inf 80].
第九步:结束!
最终结果:
以下C++代码来源于:https://blog.csdn.net/qq_35644234/article/details/60870719
Dijkstra.h文件的代码:
/************************************************************/ /* 程序作者:Willam */ /* 程序完成时间:2017/3/8 */ /* 有任何问题请联系:2930526477@qq.com */ /************************************************************/ //@尽量写出完美的程序 #pragma once //#pragma once是一个比较常用的C/C++杂注, //只要在头文件的最开始加入这条杂注, //就能够保证头文件只被编译一次。 #include<iostream> #include<string> using namespace std; /* 本程序是使用Dijkstra算法实现求解最短路径的问题 采用的邻接矩阵来存储图 */ //记录起点到每个顶点的最短路径的信息 struct Dis { string path; int value; bool visit; Dis() { visit = false; value = 0; path = ""; } }; class Graph_DG { private: int vexnum; //图的顶点个数 int edge; //图的边数 int **arc; //邻接矩阵 Dis * dis; //记录各个顶点最短路径的信息 public: //构造函数 Graph_DG(int vexnum, int edge); //析构函数 ~Graph_DG(); // 判断我们每次输入的的边的信息是否合法 //顶点从1开始编号 bool check_edge_value(int start, int end, int weight); //创建图 void createGraph(); //打印邻接矩阵 void print(); //求最短路径 void Dijkstra(int begin); //打印最短路径 void print_path(int); };
Dijkstra.cpp文件的代码:
#include"Dijkstra.h" //构造函数 Graph_DG::Graph_DG(int vexnum, int edge) { //初始化顶点数和边数 this->vexnum = vexnum;//this 代表调用构造函数的那一个一个对象的地址 this->edge = edge; //为邻接矩阵开辟空间和赋初值 arc = new int*[this->vexnum];//arc 是二级指针 dis = new Dis[this->vexnum]; for (int i = 0; i < this->vexnum; i++) { arc[i] = new int[this->vexnum]; for (int k = 0; k < this->vexnum; k++) { //邻接矩阵初始化为无穷大 arc[i][k] = INT_MAX; } } } //析构函数 Graph_DG::~Graph_DG() { delete[] dis; for (int i = 0; i < this->vexnum; i++) { delete this->arc[i]; } delete arc; } // 判断我们每次输入的的边的信息是否合法 //顶点从1开始编号 bool Graph_DG::check_edge_value(int start, int end, int weight) { if (start<1 || end<1 || start>vexnum || end>vexnum || weight < 0) { return false; } return true; } void Graph_DG::createGraph() { cout << "请输入每条边的起点和终点(顶点编号从1开始)以及其权重" << endl; int start; int end; int weight; int count = 0; while (count != this->edge) { cin >> start >> end >> weight; //首先判断边的信息是否合法 while (!this->check_edge_value(start, end, weight)) { cout << "输入的边的信息不合法,请重新输入" << endl; cin >> start >> end >> weight; } //对邻接矩阵对应上的点赋值 arc[start - 1][end - 1] = weight; //无向图添加上这行代码 //arc[end - 1][start - 1] = weight; ++count; } } void Graph_DG::print() { cout << "图的邻接矩阵为:" << endl; int count_row = 0; //打印行的标签 int count_col = 0; //打印列的标签 //开始打印 while (count_row != this->vexnum) { count_col = 0; while (count_col != this->vexnum) { if (arc[count_row][count_col] == INT_MAX) cout << "∞" << " "; else cout << arc[count_row][count_col] << " "; ++count_col; } cout << endl; ++count_row; } } void Graph_DG::Dijkstra(int begin){ //首先初始化我们的dis数组 int i; for (i = 0; i < this->vexnum; i++) { //设置当前的路径 dis[i].path = "v" + to_string(begin) + "-->v" + to_string(i + 1); dis[i].value = arc[begin - 1][i]; } //设置起点的到起点的路径为0 dis[begin - 1].value = 0; dis[begin - 1].visit = true; int count = 1; //计算剩余的顶点的最短路径(剩余this->vexnum-1个顶点) while (count != this->vexnum) { //temp用于保存当前dis数组中最小的那个下标 //min记录的当前的最小值 int temp = 0; int min = INT_MAX; for (i = 0; i < this->vexnum; i++) { if (!dis[i].visit && dis[i].value<min) { min = dis[i].value; temp = i; } } //cout << temp + 1 << " "<<min << endl; //把temp对应的顶点加入到已经找到的最短路径的集合中 dis[temp].visit = true; ++count; for (i = 0; i < this->vexnum; i++) { //注意这里的条件arc[temp][i]!=INT_MAX必须加,不然会出现溢出,从而造成程序异常 if (!dis[i].visit && arc[temp][i] != INT_MAX && (dis[temp].value + arc[temp][i]) < dis[i].value) { //如果新得到的边可以影响其他为访问的顶点,那就更新它的最短路径和长度 dis[i].value = dis[temp].value + arc[temp][i]; dis[i].path = dis[temp].path + "-->v" + to_string(i + 1); } } } } void Graph_DG::print_path(int begin) { string str; str = "v" + to_string(begin); cout << "以" << str << "为起点的图的最短路径为:" << endl; for (int i = 0; i != this->vexnum; i++) { if (dis[i].value != INT_MAX) cout << dis[i].path << "=" << dis[i].value << endl; else { cout << dis[i].path << "是无最短路径的" << endl; } } }
main.cpp文件的代码:
#include"Dijkstra.h" //检验输入边数和顶点数的值是否有效,可以自己推算为啥: //顶点数和边数的关系是:((Vexnum*(Vexnum - 1)) / 2) < edge bool check(int Vexnum, int edge) { if (Vexnum <= 0 || edge <= 0 || ((Vexnum*(Vexnum - 1)) / 2) < edge) return false; return true; } int main() { int vexnum; int edge; cout << "输入图的顶点个数和边的条数:" << endl; cin >> vexnum >> edge; while (!check(vexnum, edge)) { cout << "输入的数值不合法,请重新输入" << endl; cin >> vexnum >> edge; } Graph_DG graph(vexnum, edge); graph.createGraph(); graph.print(); graph.Dijkstra(1); graph.print_path(1); system("pause"); return 0; }
运行结果: