1、镜像:
-i http://pypi.douban.com/simple --trusted-host pypi.douban.com
2、版本信息(红色标注为我电脑的配置信息)
说明:在安装tensorflow-gpu环境时,一定要注意版本信息的对应,否则会出现各种奇葩的问题。
例如,我在安装tensorflow_gpu,由于默认安装的是最新的版本2.4.0,使用pycharm在运行代码时,编译器无法识别GPU设备信息,只能使用CPU来训练网络,结果训练效率极低;
后来,将tensorflow_gpu的版本降为tensorflow_gpu-2.0.0-alpha0后,编译器最终才能正确调用GPU来训练网络。
版本 | Python 版本 | 编译器 | 编译工具 | cuDNN | CUDA |
---|---|---|---|---|---|
tensorflow_gpu-2.0.0-alpha0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.19.2 | 7.4.1以及更高版本 |
CUDA 10.0 (需要 410.x 或更高版本) |
tensorflow_gpu-1.13.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.19.2 | 7.4 | 10.0 |
tensorflow_gpu-1.12.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.15.0 | 7 | 9 |
tensorflow_gpu-1.11.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.15.0 | 7 | 9 |
tensorflow_gpu-1.10.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.15.0 | 7 | 9 |
tensorflow_gpu-1.9.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.11.0 | 7 | 9 |
tensorflow_gpu-1.8.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.10.0 | 7 | 9 |
tensorflow_gpu-1.7.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.9.0 | 7 | 9 |
tensorflow_gpu-1.6.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.9.0 | 7 | 9 |
tensorflow_gpu-1.5.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.8.0 | 7 | 9 |
tensorflow_gpu-1.4.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.5.4 | 6 | 8 |
tensorflow_gpu-1.3.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.4.5 | 6 | 8 |
tensorflow_gpu-1.2.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.4.5 | 5.1 | 8 |
tensorflow_gpu-1.1.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.4.2 | 5.1 | 8 |
tensorflow_gpu-1.0.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.4.2 | 5.1 | 8 |