zoukankan      html  css  js  c++  java
  • 《动手学深度学习(李沐)》笔记1

    实现一个简单的线性回归(mxnet)

    from mxnet import ndarray as nd
    from mxnet import autograd
    import matplotlib.pyplot as plt
    import random
    num_input=2#变量数
    num_examples=1000#1000个样例
    true_w=[2,-3.4]#真实的系数W
    true_b=4.2#真实的偏倚b
    X=nd.random_normal(shape=(num_examples,num_input))#随机产生数据
    y=true_w[0]*X[:,0]+true_w[1]*X[:,1]+true_b#得到y值
    y+=0.01*nd.random_normal(shape=y.shape)#加噪声
    print(X[0],y[0])
    plt.scatter(X[:,1].asnumpy(),y.asnumpy())#必须转换为numpy才能绘图
    plt.show()
    batch_size=10#batch大小
    
    def data_iter():
        idx=list(range(num_examples))
        random.shuffle(idx)#打乱数组
        for i in range(0,num_examples,batch_size):#步长为10
            j=nd.array(idx[i:min(i+batch_size,num_examples)])
            yield  nd.take(X,j),nd.take(y,j)
    
    for data,label in data_iter():#从data_liter()中提取
        print(data,label)
        break
    
    w=nd.random_normal(shape=(num_input,1))#初始化
    b=nd.zeros((1,))#初始化
    params=[w,b]#参数合一
    
    for param in params:
        param.attach_grad()#给参数的梯度赋予空间
    def net(X):#设置网络
        return nd.dot(X,w)+b
    def square_loss(yhat,y):#设置损失函数
        return (yhat-y.reshape(yhat.shape))**2
    def SGD(params,lr):#随机梯度下降函数
        for param in params:#对每个参数使用随机梯度下降
            param[:]=param-lr*param.grad#param.grad是自动求导的值
    
    def real_fn(X):#真实的函数
        return 2*X[:,0]-3.4*X[:,1]+4.2
    def plot(losses,X,sample_size=100):#绘图
        xs=list(range(len(losses)))
        f=plt.figure()
        fg1=f.add_subplot(121)
        fg2=f.add_subplot(122)
        fg1.set_title('Loss during training')
        fg1.plot(xs,losses,'r')
        fg2.set_title('Estimated vs real function')
        fg2.plot(X[:sample_size,1].asnumpy(),net(X[:sample_size,:]).asnumpy(),'or',label='Estimated')
        fg2.plot(X[:sample_size,1].asnumpy(),real_fn(X[:sample_size,:]).asnumpy(),'*g',label='Real')
        fg2.legend()
        plt.show()
    epochs = 5
    learning_rate = .001
    niter = 0
    losses = []
    moving_loss = 0
    smoothing_constant = .01
    
    # 训练
    for e in range(epochs):#五次更新权重
        total_loss = 0
    
        for data, label in data_iter():
            with autograd.record():
                output = net(data)#预测值
                loss = square_loss(output, label)
            loss.backward()
            SGD(params, learning_rate)
            total_loss += nd.sum(loss).asscalar()#转换为标量求和
    
            # 记录每读取一个数据点后,损失的移动平均值的变化;
            niter +=1
            curr_loss = nd.mean(loss).asscalar()
            moving_loss = (1 - smoothing_constant) * moving_loss + (smoothing_constant) * curr_loss
    
            # correct the bias from the moving averages
            est_loss = moving_loss/(1-(1-smoothing_constant)**niter)

    结果:

    image

    image

    image

    image

    image

    image

    image


    线性回归 — 使用Gluon

    from mxnet import ndarray as nd
    from mxnet import autograd
    from mxnet import gluon
    
    num_inputs=2
    num_examples=1000
    true_w=[2,-3.4]
    true_b=4.2
    X=nd.random_normal(shape=(num_examples,num_inputs))
    y=true_w[0]*X[:,0]+true_w[1]*X[:,1]+true_b
    y+=0.01*nd.random_normal(shape=y.shape)
    
    #数据读取
    batch_size=10
    dataset=gluon.data.ArrayDataset(X,y)
    data_iter=gluon.data.DataLoader(dataset,batch_size,shuffle=True)
    
    for data,label in data_iter:
        print(data,label)
        break
    
    net=gluon.nn.Sequential()
    net.add(gluon.nn.Dense(1))
    
    net.initialize()
    square_loss=gluon.loss.L2Loss()
    trainer=gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.1})
    
    epoch=5
    batch_size=10
    for e in range(epoch):
        total_loss=0
        for data,label in data_iter:
            with autograd.record():
                output=net(data)
                loss=square_loss(output,label)
            loss.backward()
            trainer.step(batch_size)
            total_loss+=nd.sum(loss).asscalar()
        print("Epoch %d average loss:%f"%(e,total_loss/num_examples))


    image

  • 相关阅读:
    变量
    总结 对象
    学生管理系统
    [Altera] Device Part Number Format
    [Matlab] sum
    [Matlab] Galois Field
    [C] static和extern的作用
    [Python] list
    [Python] raw_input
    [软件] UnicornViewer
  • 原文地址:https://www.cnblogs.com/yifdu25/p/8358964.html
Copyright © 2011-2022 走看看