zoukankan      html  css  js  c++  java
  • 《动手学深度学习(李沐)》笔记3

    多层感知机(mxnet)

    from mxnet import gluon
    from mxnet import ndarray as nd
    from mxnet import autograd
    def transform(data, label):
        return data.astype('float32') / 255, label.astype('float32')
    def SGD(params, lr):
        for param in params:
            param[:] = param - lr * param.grad
    mnist_train = gluon.data.vision.FashionMNIST(train=True, transform=transform)
    mnist_test = gluon.data.vision.FashionMNIST(train=False, transform=transform)
    batch_size = 256
    #读取数据
    train_data = gluon.data.DataLoader(mnist_train, batch_size, shuffle=True)
    test_data = gluon.data.DataLoader(mnist_test, batch_size, shuffle=False)
    num_inputs = 28*28#输入数
    num_outputs = 10#输出数
    
    num_hidden = 256#中间结点数
    weight_scale = .01
    #参数初始化
    W1 = nd.random_normal(shape=(num_inputs, num_hidden), scale=weight_scale)
    b1 = nd.zeros(num_hidden)
    W2 = nd.random_normal(shape=(num_hidden, num_outputs), scale=weight_scale)
    b2 = nd.zeros(num_outputs)
    
    params = [W1, b1, W2, b2]#参数整合
    
    for param in params:#为参数创建导数空间
        param.attach_grad()
    def relu(X):#激活函数
        return nd.maximum(X, 0)
    def net(X):#定义网络
        X = X.reshape((-1, num_inputs))#-1表示函数未知
        h1 = relu(nd.dot(X, W1) + b1)#点乘后再用relu激活函数
        output = nd.dot(h1, W2) + b2#得到输出值
        return output
    from mxnet import gluon
    softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()#定义交叉熵
    
    from mxnet import autograd as autograd
    
    learning_rate = .5
    def accuracy(output, label):
        return nd.mean(output.argmax(axis=1)==label).asscalar()
    def evaluate_accuracy(data_iterator, net):
        acc = 0
        for data, label in data_iterator:
            output = net(data)
            # acc_tmp = accuracy(output, label)
            acc = acc + accuracy(output, label)
        return acc/len(data_iterator)
    
    for epoch in range(5):
        train_loss = 0.
        train_acc = 0.
        for data, label in train_data:
            with autograd.record():#进行梯度自动求导计算
                output = net(data)
                loss = softmax_cross_entropy(output, label)
            loss.backward()
            SGD(params, learning_rate/batch_size)
    
            train_loss += nd.mean(loss).asscalar()
            train_acc += accuracy(output, label)
    
        test_acc = evaluate_accuracy(test_data, net)
        print("Epoch %d. Loss: %f, Train acc %f, Test acc %f" % (
            epoch, train_loss/len(train_data),
            train_acc/len(train_data), test_acc))

    image


    多层感知机 — 使用Gluon

    from mxnet import ndarray as nd
    from mxnet import gluon
    from mxnet import autograd
    def transform(data, label):
        return data.astype('float32') / 255, label.astype('float32')
    
    
    #数据读取
    mnist_train = gluon.data.vision.FashionMNIST(train=True, transform=transform)
    mnist_test = gluon.data.vision.FashionMNIST(train=False, transform=transform)
    batch_size = 256
    train_data = gluon.data.DataLoader(mnist_train, batch_size, shuffle=True)
    test_data = gluon.data.DataLoader(mnist_test, batch_size, shuffle=False)
    
    #初始化网络
    
    net = gluon.nn.Sequential()
    with net.name_scope():
        net.add(gluon.nn.Flatten())
        net.add(gluon.nn.Dense(256, activation="relu"))
        net.add(gluon.nn.Dense(10))
    net.initialize()
    
    #定义损失函数
    softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
    #优化(训练)定义
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5})
    def accuracy(output, label):
        return nd.mean(output.argmax(axis=1) == label).asscalar()
    
    
    def evaluate_accuracy(test_data, net):
        acc = .0
        for data, label in test_data:
            output = net(data)
            acc += accuracy(output, label)
        return acc / len(test_data)
    for epoch in range(5):
        train_loss = 0.
        train_acc = 0.
        for data, label in train_data:
            with autograd.record():
                output = net(data)
                loss = softmax_cross_entropy(output, label)
            loss.backward()
            trainer.step(batch_size)#更新
    
            train_loss += nd.mean(loss).asscalar()
            train_acc += accuracy(output, label)
    
        test_acc = evaluate_accuracy(test_data, net)
        print("Epoch %d. Loss: %f, Train acc %f, Test acc %f" % (
            epoch, train_loss/len(train_data), train_acc/len(train_data), test_acc))


    image

  • 相关阅读:
    Jboss下jaxws的开发
    Jboss as 服务器基本设置
    classloader常见问题总结
    Servlet容器 Jetty
    Jetty 的工作原理以及与 Tomcat 的比较
    resin设置jvm参数
    Solr4.0使用
    Solr 4.0部署
    Solr 搜索功能使用
    HttpSolrServer 实例管理参考,来自org.eclipse.smila.solr
  • 原文地址:https://www.cnblogs.com/yifdu25/p/8360142.html
Copyright © 2011-2022 走看看