Description
给你一个树,可以染 (m) 个颜色,定义一个特殊颜色 (k) , 要求保证整棵树上特殊颜色的个数不超过 (x) 个。同时,如果一个节点是特殊颜色,那么它的相邻节点的颜色编号必须全部小于 (k)。求方案数。
Input
第一行 (n,m) 代表节点个数和颜色树
下面 (n~-~1) 行描述一棵树
最后一行是特殊颜色 (k) 和颜色个数 (x)
Output
输出一行一个整数,代表答案对 (10^9~+~7) 取模结果
Hint
(Forall:)
(n~leq~10^5~,~m~leq~10^9~,~k~leq~m~,~x~leq~10)
Solution
这题感觉有点像DDOSvoid的疑惑
我 爆 破 我 自 己
数数题,考虑DP。
显然这个题的选点分为三种,分别是小于 (k),等于 (k),大于 (k)。同时有颜色个数的限制,于是可以设 (f_{i,j,0/1/2}) 代表以 (i) 为根的子树,选了 (j) 个特殊颜色,其中节点 (i) 的颜色 小于/等于/大于 (k)
考虑一个节点只有两个儿子的情况,直接把贡献乘一下即可。
考虑一个节点有多个儿子的时候,每加入一个新节点产生的贡献如何计算:
设 (g_{i,j,0/1/2}) 为 (u) 的子树(省略第一维),考虑前 (i) 个儿子,选了 (j) 个 (k),节点 (i) 的状态是 (0/1/2) 的方案数。
一下假设当前枚举的是 (u) 的第 (i) 个儿子。
考虑 (u) 选小于 (k) 的情况:
则该儿子可以选 (0/1/2) 三种情况,这三种情况相互并行,应该将贡献相加,同时两两子树间互不影响,应将贡献相乘。
于是有
同理,(u) 选等于 (k) 的情况:
该儿子只能选 (0) 一种情况,于是有
同理,(u) 选大于 (k) 的情况:
该儿子可以选 (0/2) 两种可能,于是
设 (u) 有 (v) 个孩子,于是
当然 (g) 可以把第一维滚掉,这样就没有空间问题辣~
于是就可以统计答案了。记得取模。代码里面因为不知道哪里爆掉了于是干脆 (define~~int~~ll) 了23333
Code
#include <cstdio>
#include <cstring>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long
#define int ll
typedef long long ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 100010;
const int maxm = 200010;
const int MOD = 1000000007;
struct Edge {
int to, nxt;
};
Edge edge[maxm]; int hd[maxn], ecnt = 1;
inline void cont(ci from, ci to) {
Edge &e = edge[++ecnt];
e.to = to; e.nxt = hd[from]; hd[from] = ecnt;
}
int n, m, x, v, dv;
int frog[maxn][15][3], gorf[maxn][2][15][3];
void reading();
void dfs(ci, ci);
signed main() {
freopen("1.in", "r", stdin);
qr(n); qr(m);
reading();
qr(v); qr(x); dv = m - v;
dfs(1, 0);
int ans = 0;
for (rg int i = 0; i <= x; ++i)
for(rg int j = 0; j < 3; ++j) ans = (ans + frog[1][i][j]) % MOD;
qw(ans, '
', true);
return 0;
}
void reading() {
int a, b;
for (rg int i = 1; i < n; ++i) {
a = b = 0;
qr(a); qr(b);
cont(a, b);
cont(b, a);
}
}
void dfs(ci u, ci pree) {
int pre = 0;
gorf[u][pre][0][0] = v - 1;
gorf[u][pre][1][1] = 1;
gorf[u][pre][0][2] = dv;
for (int i = hd[u]; i; i = edge[i].nxt) if(i != pree) {
int &to = edge[i].to;
dfs(to, i ^ 1);
pre ^= 1;
memset(gorf[u][pre], 0, sizeof gorf[u][pre]);
for (rg int j = 0; j <= x; ++j) {
for (rg int k = 0; k <= j; ++k) {
gorf[u][pre][j][0] = (gorf[u][pre][j][0] + 1ll * gorf[u][pre ^ 1][j - k][0] * (frog[to][k][0] + frog[to][k][1] + frog[to][k][2])) % MOD;
gorf[u][pre][j][1] = (1ll * gorf[u][pre ^ 1][j - k][1] * frog[to][k][0] + gorf[u][pre][j][1]) % MOD;
gorf[u][pre][j][2] = (1ll * gorf[u][pre ^ 1][j - k][2] * (frog[to][k][0] + frog[to][k][2]) + gorf[u][pre][j][2]) % MOD;
}
}
}
for (rg int i = 0; i <= x; ++i)
for (rg int j = 0; j < 3; ++j)
frog[u][i][j] = gorf[u][pre][i][j];
#ifdef DEBUG
printf("EM%d:
", u);
for (rg int i = 0; i <= x; ++i) {
for (rg int j = 0; j < 3; ++j)
printf("%d %d %d
",i, j, frog[u][i][j]);
}
#endif
}
Summary
这类树上求方案数的问题都需要在转移时借助一个辅助数组,记录已经枚举过得儿子的信息,然后计算当前这个儿子加入的贡献。