一定存在连续的k个数,使得他们的和能被n整除。设a[i]为前缀和
a[1]%n ,a[2]%n,...,a[n]%n的值的范围<n,所以有n个数小与n,肯定会出现两个一样的数,表明了,第二个数比第一个数多出来的一部分一定能被n整除。
要注意处理 前缀和中出现0的情况。
#include<iostream> #include<cstdio> #include<cstring> #include<map> #include<vector> #include<stdlib.h> using namespace std; typedef long long LL; int main() { int n; int a[22222]; int b[22222]; int vis[22222]; while (cin >> n){ memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); memset(vis, 0, sizeof(vis)); for (int i = 1; i <= n; i++) cin >> a[i], b[i] = a[i]; for (int i = 1; i <= n; i++){ b[i] += b[i - 1]; b[i] %= n; } int gg = 0; for (int i = 1; i <= n;i++) if (b[i] == 0){ cout << i << endl; for (int j = 1; j <= i; j++) cout << a[j] << endl; gg = 1; break; } if (gg) continue; int flag = 0; for (int i = 1; i <= n; i++){ if (flag) continue; if (!vis[b[i]]){ vis[b[i]] = i; } else{ cout << i - vis[b[i]] << endl; for (int j = vis[b[i]]+1; j <= i; j++) cout << a[j] << endl; break; } } } return 0; }