zoukankan      html  css  js  c++  java
  • *模板--计算几何

    二维几何相关(未完全测试)

    基础+凸包+旋转卡壳+半平面交

      1 /*************************************************************************
      2     > File Name: board.cpp
      3     > Author: yijiull
      4     > Mail: 1147161372@qq.com 
      5     > Created Time: 2017年09月22日 星期五 08时32分54秒
      6  ************************************************************************/
      7 #include <iostream>
      8 #include <cstring>
      9 #include <cstdio>
     10 #include <bits/stdc++.h>
     11 using namespace std;
     12 const double eps = 1e-12;
     13 const int inf = 0x3f3f3f3f;
     14 struct Point {
     15     double x,y;
     16     Point (double x = 0, double y = 0) : x(x), y(y) {}
     17 };
     18 typedef Point Vector;
     19 Vector operator + (Vector a, Vector b) {
     20     return Vector (a.x + b.x, a.y + b.y);
     21 }
     22 Vector operator * (Vector a, double s) {
     23     return Vector (a.x * s, a.y * s);
     24 }
     25 Vector operator / (Vector a, double p) {
     26     return Vector (a.x / p, a.y / p);
     27 }
     28 Vector operator - (Point a, Point b) {
     29     return Vector (a.x - b.x, a.y - b.y);
     30 }
     31 bool operator < (Point a, Point b) {
     32     return a.x < b.x || (a.x == b.x && a.y < b.y);
     33 }
     34 int dcmp (double x) {
     35     if(fabs(x) < eps) return 0;
     36     return x < 0 ? -1 : 1;
     37 }
     38 bool operator == (const Point &a, const Point &b) {
     39     return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
     40 }
     41 double Angel (Vector a) {
     42     return atan2(a.y, a.x);
     43 }
     44 double Dot(Vector a, Vector b) {
     45     return a.x * b.x + a.y * b.y;
     46 }
     47 double Length (Vector a) {
     48     return sqrt(Dot(a, a));
     49 }
     50 double Angle (Vector a, Vector b) {
     51     return acos(Dot(a, b) / Length(a) / Length(b));
     52 }
     53 double Cross (Vector a, Vector b) {
     54     return a.x * b.y - a.y * b.x;
     55 }
     56 double  Area2 (Point a, Point b, Point c) {
     57     return Cross(b - a, c - a);
     58 }
     59 Vector Rotate (Vector a, double rad) {  //右手逆时针旋转rad(弧度)
     60     return Vector (a.x * cos(rad) - a.y * sin(rad), a.x * sin(rad) + a.y * cos(rad));
     61 }
     62 Vector Normal (Vector a) {
     63     double L = Length(a);
     64     return Vector(-a.y / L, a.x / L);
     65 }
     66 //两直线交点
     67 Point GetLineIntersection (Point p, Vector v, Point q, Vector w) {
     68     Vector u = p - q;
     69     double t1 = Cross(w, u) / Cross(v, w);
     70     double t2 = Cross(v, u) / Cross(v, w);
     71     return p + v * t1;  //  return q + w * t2;
     72 }
     73 //点到直线的dis
     74 double DistanceToLine(Point p, Point a, Point b) {
     75     Vector v1 = b - a, v2 = p - a;
     76     return fabs(Cross(v1, v2)) / Length(v1);
     77 }
     78 //点到线段的dis
     79 double DistanceToSegment(Point p, Point a, Point b) {
     80     if(a == b) return Length(a - p);
     81     Vector v1 = b - a, v2 = p - a, v3 = p - b;
     82     if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
     83     else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); 
     84     else return fabs(Cross(v1, v2)) / Length(v1);
     85 }
     86 //点在直线的投影
     87 Point GetLineProjection(Point p, Point a, Point b) {
     88     Vector v = b - a;
     89     return a + v * (Dot(v, p-a) / Dot(v, v));
     90 }
     91 //判断两线段是否规范相交
     92 bool SegmentProperIntersection(Point a1, Point b1, Point a2, Point b2) { 
     93     double c1 = Cross(b1 - a1, a2 - a1), c2 = Cross(b1 - a1, b2 - a1),
     94            c3 = Cross(b2 - a2, a1 - a2), c4 = Cross(b2 - a2, b1 - a2);
     95     return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
     96 }
     97 //判断点是否在线段上(即∠APB等于π)
     98 bool OnSegment(Point p, Point a, Point b) {
     99     return dcmp(Cross(a - p, b - p)) == 0 && dcmp(Dot(a - p, b - p)) < 0;
    100 }
    101 //多边形面积
    102 double ConvexPolygonArea(Point *p, int n) {
    103     double area = 0;
    104     for(int i = 1; i < n-1; i++) {
    105         area += Cross(p[i] - p[0], p[i+1] - p[0]);
    106     }
    107     return area / 2;
    108 }
    109 //判断点是否在多边形内or外or上
    110 bool isPointInPolygon(Point p,Point *poly, int n) {
    111     int cnt = 0;
    112     poly[n] = poly[0];
    113     for(int i = 0; i < n; i++) {
    114         if(OnSegment(p, poly[i], poly[i+1])) return 0;  //在边界上
    115         int k = dcmp(Cross(poly[i+1]-poly[i], p - poly[i]));
    116         int d1 = dcmp(poly[i].y - p.y);
    117         int d2 = dcmp(poly[i+1].y - p.y);
    118         if(k > 0 && d1 <= 0 && d2 > 0) cnt++;
    119         if(k < 0 && d2 <= 0 && d1 >= 0) cnt--;
    120     }
    121     if(cnt) return -1; //内部
    122     return 1; //外部
    123 }
    124 //凸包
    125 int ConvexHull(Point *p, int n, Point *ch) {
    126     int m = 0;
    127     sort(p, p+n);
    128     for(int i = 0; i < n; i++) {
    129         while(m > 1 && Cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0) m--;  //去掉在边上的点
    130         ch[m++] = p[i];
    131     }
    132     int k = m;
    133     for(int i = n-2; i >= 0; i--) {
    134         while(m > k && Cross(ch[m-1] - ch[m-2], p[i] - ch[m-2]) <= 0) m--;  //
    135         ch[m++] = p[i];
    136     }
    137     if(m > 1) m--;
    138     return m;
    139 }
    140 //判断是否是稳定凸包
    141 bool IsStableConvexHull(Point *ch, int n) {
    142     if(n == 0) return 0;
    143     ch[n] = ch[0];
    144     ch[n+1] = ch[1];
    145     for(int i = 0; i < n; i++) {
    146         if(Cross(ch[i] - ch[(i-1+n)%n], ch[i+1] - ch[i]) != 0 && Cross(ch[i+1] - ch[i] , ch[i+2] - ch[i]) != 0) 
    147             return 0;
    148     }
    149     return 1;
    150 }
    151 //旋转卡壳求凸包直径
    152 double RotateCalipers(Point *ch, int n) {
    153     double ans = - inf;
    154     ch[n] = ch[0];
    155     int q = 1;
    156     for(int i = 0; i < n; i++) {
    157         while(Cross(ch[i+1] - ch[i], ch[q] - ch[i]) < Cross(ch[i+1] - ch[i], ch[q+1] -ch[i])) q = (q+1)%n;
    158         ans = max(ans, max(Length(ch[i] - ch[q]), Length(ch[i+1] -ch[q+1])));
    159     }
    160     return ans;
    161 }
    162 
    163 //半平面交
    164 struct Line{
    165     Point p;
    166     Vector v;
    167     double rad;
    168     Line () {}
    169     Line (Point p, Vector v) : p(p), v(v) {
    170         rad = atan2(v.y,v.x);
    171     }
    172     bool operator < (const Line &L) const {
    173         return rad < L.rad;
    174     }
    175 };
    176 bool OnLeft(Line L, Point p) {
    177     return Cross(L.v, p - L.p) > 0;
    178 }
    179 Point GetLineIntersection (Line a, Line b) {
    180     Vector u = a.p - b.p;
    181     double t = Cross(b.v, u) / Cross(a.v, b.v);
    182     return a.p + a.v*t;
    183 }
    184 
    185 int HalfplaneIntersection(Line *L, int n,Point *poly) {
    186     sort(L, L+n);
    187     int first,last;
    188     Point *p = new Point[n];
    189     Line *q = new Line[n];  //双端队列
    190     q[first = last = 0] = L[0];
    191     for(int i = 1; i < n; i++) {
    192         while(first < last && !OnLeft(L[i], p[last-1])) last--;   //去尾
    193         while(first < last && !OnLeft(L[i], p[first])) first++; 
    194         q[++last] = L[i];
    195         if(dcmp(Cross(q[last].v, q[last-1].v)) == 0) {
    196             last--;
    197             if(OnLeft(q[last], L[i].p)) q[last] = L[i];
    198         }
    199         if(first < last) p[last-1] = GetLineIntersection (q[last-1],q[last]);
    200     }
    201     while(first < last && !OnLeft(q[first], p[last-1])) last--;  //删除无用平面
    202     if(last - first <= 1) return 0;  //空集
    203     p[last] = GetLineIntersection (q[last], q[first]);
    204 
    205     int m = 0;
    206     for(int i = first; i <= last; i++) poly[m++] = p[i];
    207     return m;
    208 }
    209 
    210 int main(){
    211 
    212 }
    View Code
     1 //线段AB与圆的交点
     2 void LineIntersectionCircle(Point A, Point B, Circle cr, Point *p, int &num){
     3     double x0 = cr.o.x, y0 = cr.o.y;
     4     double x1 = A.x, y1 = A.y, x2 = B.x, y2 = B.y;
     5     double dx = x2 - x1, dy = y2 - y1;
     6     double a = dx * dx + dy * dy;
     7     double b = 2 * dx *(x1 - x0) + 2 * dy * (y1 -y0);
     8     double c = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0) - cr.r *cr.r;
     9     double delta = b*b - 4*a*c;
    10     num = 0;
    11     if(dcmp(delta) >= 0){
    12         double t1 = (-b - sqrt(delta)) / (2*a);
    13         double t2 = (-b + sqrt(delta)) / (2*a);
    14         if(dcmp(t1-1) <= 0 && dcmp(t1) >= 0) {
    15             p[num++] = Point(x1 + t1*dx, y1 + t1*dy);
    16         }
    17         if(dcmp(t2-1) <= 0 && dcmp(t2) >= 0) {
    18             p[num++] = Point(x1 + t2*dx, y1 + t2*dy);
    19         }
    20     }
    21 }
    22 //扇形面积
    23 double SectorArea(Point a, Point b, Circle cr){
    24     double theta = Angle(a - cr.o) - Angle(b - cr.o);
    25     while(theta <= 0) theta += 2*pi;
    26     while(theta > 2*pi) theta -= 2*pi;
    27     theta = min(theta, 2*pi - theta);
    28     return cr.r * cr.r * theta / 2;
    29 }
    30 
    31 double cal(Point a, Point b, Circle cr){
    32     Point tp[3];
    33     int num = 0;
    34     Vector ta = a - cr.o;
    35     Vector tb = b - cr.o;
    36     bool ina = (Length(ta) - cr.r) < 0;
    37     bool inb = (Length(tb) - cr.r) < 0;
    38     if(ina){
    39         if(inb){
    40             return fabs(Cross(ta, tb))/2;
    41         } else{
    42             LineIntersectionCircle(a, b, cr, tp, num); 
    43             return SectorArea(b, tp[0], cr) + fabs(Cross(ta, tp[0] - cr.o))/2;
    44         }
    45     } else{
    46         if(inb){
    47             LineIntersectionCircle(a, b, cr, tp, num); 
    48             return SectorArea(a, tp[0], cr) + fabs(Cross(tb, tp[0] - cr.o))/2;
    49         } else {
    50             LineIntersectionCircle(a, b, cr, tp, num); 
    51             if(num == 2) {
    52                 return SectorArea(a, tp[0], cr) + SectorArea(b, tp[1], cr) + fabs(Cross(tp[0]-cr.o, tp[1]-cr.o))/2;
    53             } else {
    54                 return SectorArea(a, b, cr);
    55             }
    56         }
    57     }
    58 }
    59 //圆与多边形的面积并
    60 double CirclePolyArea(Point *p, int n, Circle cr){
    61    double res = 0;
    62    p[n] = p[0];
    63    for(int i = 0; i < n; i++){
    64        int sgn = dcmp(Cross(p[i] - cr.o, p[i+1] - cr.o));
    65        if(sgn){
    66            res += sgn * cal(p[i], p[i+1], cr);
    67        }
    68    }
    69    return res;
    70 }
    圆与多边形的面积并

    自适应辛普森积分

     1 double F(double x) {
     2     //Simpson公式用到的函数
     3 }
     4 double simpson(double a, double b) {  //三点Simpson法,这里要求F是一个全局函数
     5     double c = a + (b - a) / 2;
     6     return (F(a) + 4 * F(c) + F(b))*(b - a) / 6;
     7 }
     8 double asr(double a, double b, double eps, double A) { //自适应Simpson公式(递归过程)。已知整个区间[a,b]上的三点Simpson值A
     9     double c = a + (b - a) / 2;
    10     double L = simpson(a, c), R = simpson(c, b);
    11     if (fabs(L + R - A) <= 15 * eps)return L + R + (L + R - A) / 15.0;
    12     return asr(a, c, eps / 2, L) + asr(c, b, eps / 2, R);
    13 }
    14 double asr(double a, double b, double eps) { //自适应Simpson公式(主过程)
    15     return asr(a, b, eps, simpson(a, b));
    16 }
    View Code

    多边形重心

     1 /*
     2  *  求多边形重心
     3  *  INIT: pnt[]已按顺时针(或逆时针)排好序; | CALL: res = bcenter(pnt, n);
     4  */
     5 Point bcenter(Point pnt[], int n) {
     6     Point p, s;
     7     double tp, area = 0, tpx = 0, tpy = 0;
     8     p.x = pnt[0].x;
     9     p.y = pnt[0].y;
    10     for (int i = 1; i <= n; ++i) {
    11         //  Point:0 ~ n - 1
    12         s.x = pnt[(i == n) ? 0 : i].x;
    13         s.y = pnt[(i == n) ? 0 : i].y;
    14         tp = (p.x * s.y - s.x * p.y);
    15         area += tp / 2;
    16         tpx += (p.x + s.x) * tp;
    17         tpy += (p.y + s.y) * tp;
    18         p.x = s.x;
    19         p.y = s.y;
    20     }
    21     s.x = tpx / (6 * area);
    22     s.y = tpy / (6 * area);
    23     return s;
    24 }
    View Code

    相关公式(转自f_zyj

     1 已知圆锥表面积S求最大体积V
     2 
     3     V = S * sqrt(S / (72 * Pi))
     4 
     5 三角形重点
     6 
     7 设三角形的三条边为a, b, c, 且不妨假设a <= b <= c.
     8 面积
     9 
    10 三角形面积可以根据海伦公式求得:
    11 
    12     s = sqrt(p * (p - a) * (p - b) * (p - c));
    13     p = (a + b + c) / 2;
    14 
    15 关键点与A, B, C三顶点距离之和
    16 费马点
    17 
    18 该点到三角形三个顶点的距离之和最小。
    19 有个有趣的结论:
    20 若三角形的三个内角均小于120度,那么该点连接三个顶点形成的三个角均为120度;若三角形存在一个内角大于120度,则该顶点就是费马点。
    21 计算公式如下:
    22 若有一个内角大于120度(这里假设为角C),则距离为a + b;若三个内角均小于120度,则距离为sqrt((a * a + b * b + c * c + 4 * sqrt(3.0) * s) / 2)。
    23 内心
    24 
    25 角平分线的交点。
    26 令x = (a + b - c) / 2, y = (a - b + c) / 2, z = (-a + b + c) / 2, h = s / p.
    27 计算公式为sqrt(x * x + h * h) + sqrt(y * y + h * h) + sqrt(z * z + h * h)。
    28 重心
    29 
    30 中线的交点。
    31 计算公式如下:
    32 2.0 / 3 * (sqrt((2 * (a * a + b * b) - c * c) / 4)
    33 + sqrt((2 * (a * a + c * c) - b * b) / 4) + sqrt((2 * (b * b + c * c) - a * a) / 4))。
    34 垂心
    35 
    36 垂线的交点。
    37 计算公式如下:
    38 3 * (c / 2 / sqrt(1 - cosC * cosC))。
    39 外心
    40 
    41 三点求圆心坐标。
    42 
    43 Point waixin(Point a, Point b, Point c)
    44 {
    45     double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1 * a1 + b1 * b1) / 2;
    46     double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2 * a2 + b2 * b2) / 2;
    47     double d = a1 * b2 - a2 * b1;
    48     return Point(a.x + (c1 * b2 - c2 * b1) / d, a.y + (a1 * c2 -a2 * c1) / d);
    49 }
    View Code

    圆的面积交

     1 double area[maxn];
     2 #define sqr(x) (x)*(x)
     3 int dcmp(double x) {
     4     if (x < -eps) return -1; else return x > eps;
     5 }
     6 struct cp {
     7     double x, y, r, angle;
     8     int d;
     9     cp(){}
    10     cp(double xx, double yy, double ang = 0, int t = 0) {
    11         x = xx;  y = yy;  angle = ang;  d = t;
    12     }
    13     void get() {
    14         scanf("%lf%lf%lf", &x, &y, &r);
    15         d = 1;
    16     }
    17 }cir[maxn], tp[maxn * 2];
    18 double dis(cp a, cp b) {
    19     return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
    20 }
    21 double cross(cp p0, cp p1, cp p2) {
    22     return (p1.x - p0.x) * (p2.y - p0.y) - (p1.y - p0.y) * (p2.x - p0.x);
    23 }
    24 int CirCrossCir(cp p1, double r1, cp p2, double r2, cp &cp1, cp &cp2) {
    25     double mx = p2.x - p1.x, sx = p2.x + p1.x, mx2 = mx * mx;
    26     double my = p2.y - p1.y, sy = p2.y + p1.y, my2 = my * my;
    27     double sq = mx2 + my2, d = -(sq - sqr(r1 - r2)) * (sq - sqr(r1 + r2));
    28     if (d + eps < 0) return 0; if (d < eps) d = 0; else d = sqrt(d);
    29     double x = mx * ((r1 + r2) * (r1 - r2) + mx * sx) + sx * my2;
    30     double y = my * ((r1 + r2) * (r1 - r2) + my * sy) + sy * mx2;
    31     double dx = mx * d, dy = my * d; sq *= 2;
    32     cp1.x = (x - dy) / sq; cp1.y = (y + dx) / sq;
    33     cp2.x = (x + dy) / sq; cp2.y = (y - dx) / sq;
    34     if (d > eps) return 2; else return 1;
    35 }
    36 bool circmp(const cp& u, const cp& v) {
    37     return dcmp(u.r - v.r) < 0;
    38 }
    39 bool cmp(const cp& u, const cp& v) {
    40     if (dcmp(u.angle - v.angle)) return u.angle < v.angle;
    41     return u.d > v.d;
    42 }
    43 double calc(cp cir, cp cp1, cp cp2) {
    44     double ans = (cp2.angle - cp1.angle) * sqr(cir.r) 
    45         - cross(cir, cp1, cp2) + cross(cp(0, 0), cp1, cp2);
    46     return ans / 2;
    47 }
    48 void CirUnion(cp cir[], int n) {
    49     cp cp1, cp2;
    50     sort(cir, cir + n, circmp);
    51     for (int i = 0; i < n; ++i)
    52         for (int j = i + 1; j < n; ++j)
    53             if (dcmp(dis(cir[i], cir[j]) + cir[i].r - cir[j].r) <= 0)
    54                 cir[i].d++;
    55     for (int i = 0; i < n; ++i) {
    56         int tn = 0, cnt = 0;
    57         for (int j = 0; j < n; ++j) {
    58             if (i == j) continue;
    59             if (CirCrossCir(cir[i], cir[i].r, cir[j], cir[j].r,
    60                 cp2, cp1) < 2) continue;
    61             cp1.angle = atan2(cp1.y - cir[i].y, cp1.x - cir[i].x);
    62             cp2.angle = atan2(cp2.y - cir[i].y, cp2.x - cir[i].x);
    63             cp1.d = 1;    tp[tn++] = cp1;
    64             cp2.d = -1;   tp[tn++] = cp2;
    65             if (dcmp(cp1.angle - cp2.angle) > 0) cnt++;
    66         }
    67         tp[tn++] = cp(cir[i].x - cir[i].r, cir[i].y, pi, -cnt);
    68         tp[tn++] = cp(cir[i].x - cir[i].r, cir[i].y, -pi, cnt);
    69         sort(tp, tp + tn, cmp);
    70         int p, s = cir[i].d + tp[0].d;
    71         for (int j = 1; j < tn; ++j) {
    72             p = s;  s += tp[j].d;
    73             area[p] += calc(cir[i], tp[j - 1], tp[j]);
    74         }
    75     }
    76 }
    View Code

    三维几何相关

      1 /*************************************************************************
      2     > File Name: board.cpp
      3     > Author: yijiull
      4     > Mail: 1147161372@qq.com 
      5     > Created Time: 2017年09月22日 星期五 16时51分54秒
      6  ************************************************************************/
      7 #include <iostream>
      8 #include <cstring>
      9 #include <cstdio>
     10 #include <bits/stdc++.h>
     11 using namespace std;
     12 const double eps = 1e-12;
     13 const int inf = 0x3f3f3f3f;
     14 struct Point3{
     15     double x, y, z;
     16     Point3(double x=0, double y=0, double z=0) : x(x), y(y), z(z) {} 
     17 };
     18 int dcmp(double x) {
     19     if(fabs(x) < eps) return 0;
     20     return x < 0 ? -1 : 1; 
     21 }
     22 typedef Point3 Vector3;
     23 Vector3 operator + (Vector3 a, Vector3 b) {
     24     return Vector3(a.x + b.x, a.y + b.y, a.z + b.z);
     25 }
     26 Vector3 operator - (Point3 a, Point3 b) {
     27     return Vector3(a.x - b.x, a.y - b.y, a.z - b.z); 
     28 }
     29 Vector3 operator * (Vector3 a, double p) {
     30     return Vector3(a.x * 3, a.y * 3, a.z * 3);
     31 }
     32 Vector3 operator / (Vector3 a, double p) {
     33     return Vector3(a.x / p, a.y / p, a.z / p);
     34 }
     35 double Dot(Vector3 a, Vector3 b) {
     36     return a.x * b.x + a.y * b.y + a.z * b.z; 
     37 }
     38 bool operator == (Point3 a, Point3 b) {
     39     return a.x==b.x && a.y==b.y && a.z==b.z;
     40 }
     41 double Length(Vector3 a) {
     42     return sqrt(Dot(a,a));
     43 }
     44 double Angle(Vector3 a, Vector3 b) {
     45     return acos(Dot(a,b) / Length(a) / Length(b)) ; 
     46 }
     47 Vector3 Normal(Vector3 a) {
     48     return a / Length(a);
     49 }
     50 //点p到平面p0-n的距离,n是单位向量
     51 double DistanceToPlane(const Point3 & p, const Point3 &p0, const Vector3 &n) {
     52     return fabs(Dot(p-p0, n));  //如果不取绝对值,得到的是有向距离
     53 }
     54 
     55 //点P在平面p0-n上的投影,n必须为单位向量
     56 Point3 GetPlaneProjection(const Point3 p, const Point3 &p0, const Vector3 &n) {
     57     return p - n * Dot(p - p0, n); 
     58 }
     59 //直线p1-p2到平面p0-n的交点,假定交点唯一存在
     60 Point3 LinePlaneIntersection(Point3 p1, Point3 p2, Point3 p0, Vector3 n) {
     61     Vector3 v = p2 - p1;
     62     double t = (Dot(n, p0 -p1) / Dot(n, p2 -p1)); //判断分母是否为0
     63     return p1 + v * t; //如果是线段,判断t是不是在0和1之间
     64 }
     65 
     66 Vector3 Cross(Vector3 a, Vector3 b) {
     67     return Vector3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x); 
     68 }
     69 double Area2(Point3 a, Point3 b, Point3 c) {
     70     return Length(Cross(b-a, c-a));
     71 }
     72 //点p在三角形p0,p1,p2中
     73 bool PointInTri(Point3 p, Point3 p0, Point3 p1, Point3 p2) {
     74     double area1 = Area2(p, p0, p1);
     75     double area2 = Area2(p, p1, p2);
     76     double area3 = Area2(p, p2, p0);
     77     return dcmp(area1 + area2 + area3 - Area2(p0, p1, p2)) == 0;
     78 }
     79 //三角形p0,p1,p2是否和线段ab相交
     80 bool TriSegIntersection(Point3 p0, Point3 p1, Point3 p2, Point3 a, Point3 b, Point3 &p) {
     81     Vector3 n = Cross(p1 - p0, p2 - p0);
     82     if(dcmp(Dot(n, b - a)) == 0) return false;  //无交点
     83     double t = Dot(n, p0 - a) / Dot(n, b - a); 
     84     if(dcmp(t) < 0 || dcmp(t-1) > 0) return false;  //交点不在直线上
     85     p = a + (b - a) * t;
     86     return PointInTri(p, p0, p1, p2);  //是否在三角形内
     87 }
     88 //点p到直线ab的距离
     89 double DistanceToLine(Point3 p, Point3 a, Point3 b) {
     90     Vector3 v1 = b - a, v2 = p - a;
     91     return Length(Cross(v1, v2)) / Length(v1);
     92 }
     93 //点p到线段ab的距离
     94 double DisstanceToSegment(Point3 p, Point3 a, Point3 b) {
     95     if(a == b) return Length(p - a);
     96     Vector3 v1 = b - a, v2 = p - a, v3 = p - b;
     97     if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
     98     else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
     99     else return Length(Cross(v1, v2)) / Length(v1);
    100 }
    101 //四面体abcd的体积
    102 double Volume6(Point3 a, Point3 b, Point3 c, Point3 d) {
    103     return Dot(d-a, Cross(b-a, c-a));
    104 }
    105 
    106 //三维凸包
    107 int vis[200][200];
    108 struct Face{
    109     int v[3];
    110     Vector3 normal(Point3 *p) const {
    111         return Cross(p[v[1]] - p[v[0]], p[v[2]] - p[v[0]]);
    112     }
    113     int cansee(Point3 *p, int i) const {
    114         return Dot(p[i] - p[v[0]], normal(p)) > 0 ? 1 : 0;
    115     }
    116 };
    117 //倍增法求三维凸包
    118 //没有考虑特殊情况(如四点共面),实践中,请在调用之前对输入点进行微小扰动
    119 vector<Face> CH3D(Point3 *p, int n) {
    120     vector<Face> cur;
    121     memset(vis, 0, sizeof(vis));
    122     //由于已经扰动,前三个点不共线
    123     cur.push_back((Face){ {0, 1, 2} } );
    124     cur.push_back((Face){ {2, 1, 0} } );
    125     for(int i = 3; i < n; i++) {
    126         vector<Face> next;
    127         for(int j = 0; j < cur.size(); j++) {
    128             Face &f = cur[j];
    129             int res = f.cansee(p, i);
    130             if(!res) next.push_back(f);
    131             for(int k = 0; k < 3; k++) vis[f.v[k]][f.v[(k+1)%3]] = res;
    132         }
    133         for(int j = 0; j < cur.size(); j++) {
    134             for(int k = 0; k < 3; k++) {
    135                 int a = cur[j].v[k], b = cur[j].v[(k+1)%3];
    136                 if(vis[a][b] != vis[b][a] && vis[a][b])  //(a, b) 是分界线, 左边对(a, b) 可见
    137                     next.push_back((Face) { {a, b, i} } );
    138             }
    139         }
    140         cur = next;
    141     }
    142     return cur;
    143 }
    144 //扰动!!!
    145 double rand01() {
    146     return rand() / (double)RAND_MAX; 
    147 }
    148 double randeps() {
    149     return (rand01() - 0.5) * eps;
    150 }
    151 Point3 add_noise(Point3 p) {
    152     return Point3(p.x + randeps(), p.y + randeps(), p.z + randeps());
    153 }
    154 
    155 int main(){
    156 
    157 }
    View Code

     

     

  • 相关阅读:
    【操作系统】第九章 虚拟内存
    【计网】第七章
    信息安全数学基础整理笔记
    深入浅出数据分析 笔记总结
    ERROR: Error cloning remote repo 'origin'
    Docker 操作
    centos 安装 git
    CentOS 7 安装 JAVA环境(JDK 1.8)
    如何删除 容器里的软件(彻底)
    Docker 部署 Jenkins :通过SSH配置Linux宿主机为slave节点,运行外部环境
  • 原文地址:https://www.cnblogs.com/yijiull/p/7573367.html
Copyright © 2011-2022 走看看