zoukankan      html  css  js  c++  java
  • Find the Border UVALive

    Find the Border

     UVALive - 3218 

    PSGL

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 #define pb push_back
      4 const double eps = 1e-8;
      5 const int inf = 0x3f3f3f3f;
      6 
      7 int dcmp(double x) {
      8     if(fabs(x) < eps) return 0;
      9     return x < 0 ? -1 : 1;
     10 }
     11 
     12 struct Point {
     13     double x,y;
     14     Point (double x=0, double y=0): x(x), y(y) {}
     15 };
     16 typedef Point Vector;
     17 
     18 Vector operator + (Vector a, Vector  b) {
     19     return Vector(a.x+b.x, a.y+b.y);
     20 }
     21 Vector operator - (Point a, Point b) {
     22     return Vector(a.x-b.x, a.y-b.y);
     23 }
     24 Vector operator * (Vector a, double p) {
     25     return Vector(a.x*p, a.y*p);
     26 }
     27 Vector operator / (Vector a, double p) {
     28     return Vector(a.x/p, a.y/p);
     29 }
     30 // 理论上这个“小于”运算符是错的,因为可能有三个点a, b, c, a和b很接近(即a<b好b<a都不成立),b和c很接近,但a和c不接近
     31 // 所以使用这种“小于”运算符的前提是能排除上述情况
     32 bool operator < (Point a, Point b) {
     33     return dcmp(a.x-b.x)<0 || (dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)<0);
     34 }
     35 bool operator == (Point a, Point b) {
     36     return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
     37 }
     38 double Dot(Vector a, Vector b) {
     39     return a.x*b.x + a.y*b.y;
     40 }
     41 double Cross(Vector a, Vector b) {
     42     return a.x*b.y - a.y*b.x;
     43 }
     44 double Length(Vector a) {
     45     return sqrt(Dot(a,a));
     46 }
     47 
     48 typedef vector<Point> Poly;
     49 
     50 bool SegProIn(Point a1, Point b1, Point a2, Point b2) {
     51     double c1 = Cross(b1-a1, b2-a1), c2 = Cross(b1-a1,a2-a1);
     52     double c3 = Cross(b2-a2, a1-a2), c4 = Cross(b2-a2, b1-a2);
     53     return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
     54 }
     55 Point GetLineIn(Point p, Vector v, Point q, Vector w) {
     56     Vector u = p-q;
     57     double t = Cross(w,u) / Cross(v,w);
     58     return p+v*t;
     59 }
     60 bool OnSeg(Point p, Point a, Point b) {
     61     return dcmp(Cross(a-p, b-p))==0 && dcmp(Dot(a-p, b-p))<0;
     62 }
     63 // 多边形的有向面积
     64 double GetArea(Poly p) {
     65     double area = 0;
     66     int n = p.size();
     67     for(int i = 1; i < n-1; i++) area += Cross(p[i]-p[0], p[(i+1)%n]-p[0]);
     68     return area/2;
     69 }
     70 
     71 struct Edge{
     72     int u, v;
     73     double ang;
     74     Edge(int u=0, int v=0, double ang=0): u(u), v(v), ang(ang){}
     75 };
     76 const int maxe = 10000+10;  // 最大边数
     77 
     78 // 平面直线图(PSGL)实现
     79 struct PSGL{
     80     int n, m, face_cnt;
     81     double x[maxe], y[maxe];
     82     vector<Edge> edges;
     83     vector<int> G[maxe];
     84     int vis[maxe<<1];  // 每条边是否已经访问过
     85     int left[maxe<<1];  // 左面的编号
     86     int pre[maxe<<1];  // 相同起点的上一条边(即顺时针旋转碰到的下一条边)的编号
     87 
     88     vector<Poly> faces;
     89     double area[maxe];
     90 
     91     void init(int n) {
     92         this->n = n;
     93         for(int i = 0; i < n; i++) G[i].clear();
     94         edges.clear();
     95         faces.clear();
     96     }
     97     double getAngle(int u,int v) {
     98         return atan2(y[v]-y[u], x[v]-x[u]);
     99     }
    100     void add(int u, int v) {
    101         edges.pb(Edge(u,v,getAngle(u,v)));
    102         edges.pb(Edge(v,u,getAngle(v,u)));
    103         m = edges.size();
    104         G[u].pb(m-2);
    105         G[v].pb(m-1);
    106     }
    107     //找出faces并计算面积
    108     void build(){
    109         for(int  u = 0; u < n; u++) {
    110             int d = G[u].size();
    111             for(int i = 0; i < d; i++) {
    112                 for(int j = i+1; j < d; j++) {
    113                     if(edges[G[u][i]].ang > edges[G[u][j]].ang) swap(G[u][i],G[u][j]);
    114                 }
    115             }
    116             for(int i = 0; i < d; i++) pre[G[u][(i+1)%d]] = G[u][i];
    117         }
    118         memset(vis, 0, sizeof(vis));
    119         face_cnt = 0;
    120         for(int u = 0; u < n; u++) {
    121             for(int i = 0; i < G[u].size(); i++){
    122                 int e = G[u][i];
    123                 if(!vis[e]){  //逆时针找圈
    124                     face_cnt++;
    125                     Poly p;
    126                     while(1){
    127                         vis[e] = 1;
    128                         left[e] = face_cnt;
    129                         int from = edges[e].u;
    130                         p.pb(Point(x[from], y[from]));
    131                         e = pre[e^1];
    132                         if(e == G[u][i]) break;
    133                     }
    134                     faces.pb(p);
    135                 }
    136             }
    137         }
    138         for(int i = 0; i < faces.size(); i++) {
    139             area[i] = GetArea(faces[i]);
    140 
    141         }
    142     }
    143 
    144 };
    145 
    146 PSGL g;
    147 
    148 const int maxv = 110;
    149 int n, c;
    150 
    151 Point p[maxv];
    152 Point V[maxv*maxv/2+maxv];
    153 
    154 int ID(Point p) {
    155     return lower_bound(V, V+c, p) - V;
    156 }
    157 //假定poly没有相邻点重合的情况,只需要删除三点共线的情况
    158 Poly simplify(const Poly& p) {
    159     Poly temp;
    160     int n = p.size();
    161     for(int i = 0; i < n; i++) {
    162         Point a = p[i];
    163         Point b = p[(i+1)%n];
    164         Point c = p[(i+2)%n];
    165         if(dcmp(Cross(a-b, c-b)) != 0) temp.pb(b);
    166     }
    167     return temp;
    168 }
    169 
    170 void build_graph(){
    171     c = n;
    172     for(int i = 0; i < n; i++) V[i] = p[i];
    173     vector<double> dis[maxv];    // dist[i][j]是第i条线段上的第j个点离起点(P[i])的距离
    174     for(int i = 0; i < n; i++) {
    175         for(int j = i+1; j < n; j++) {
    176             if(SegProIn(p[i], p[(i+1)%n], p[j], p[(j+1)%n])) {
    177                 Point xy = GetLineIn(p[i], p[(i+1)%n]-p[i], p[j], p[(j+1)%n]-p[j]);
    178                 V[c++] = xy;
    179                 dis[i].pb(Length(xy - p[i]));
    180                 dis[j].pb(Length(xy - p[j]));
    181             }
    182         }
    183     }
    184     // 为了保证“很接近的点”被看作同一个,这里使用了sort+unique的方法
    185   // 必须使用前面提到的“理论上是错误”的小于运算符,否则不能保证“很接近的点”在排序后连续排列
    186   // 另一个常见的处理方式是把坐标扩大很多倍(比如100000倍),然后四舍五入变成整点(计算完毕后再还原),用少许的精度损失换来鲁棒性和速度。
    187     sort(V, V+c);
    188     c = unique(V, V+c) - V;
    189 
    190     g.init(c);  //c是平面图的点数
    191     for(int i = 0; i < c; i++) {
    192         g.x[i] = V[i].x;
    193         g.y[i] = V[i].y;
    194     }
    195     for(int  i = 0; i < n; i++) {
    196         Vector v = p[(i+1)%n] - p[i];
    197         double len = Length(v);
    198         dis[i].pb(0);
    199         dis[i].pb(len);
    200         sort(dis[i].begin(), dis[i].end());
    201         int sz = dis[i].size();
    202         for(int j = 1; j < sz; j++) {
    203             Point a = p[i] + v*(dis[i][j-1]/len);
    204             Point b = p[i] + v*(dis[i][j]/len);
    205             if(a == b) continue;
    206             g.add(ID(a), ID(b));
    207         }
    208     }
    209     g.build();
    210 
    211     Poly po;
    212     for(int i = 0; i < g.faces.size(); i++) {
    213         if(g.area[i] < 0) {   // 对于连通图,惟一一个面积小于零的面是无限面
    214             po = g.faces[i];
    215             reverse(po.begin(),po.end());   // 对于内部区域来说,无限面多边形的各个顶点是顺时针的
    216             po = simplify(po);  // 无限面多边形上可能会有相邻共线点
    217             break;
    218         }
    219     }
    220     int m = po.size();
    221     printf("%d
    ", m);
    222     int s = 0;
    223     for(int i = 0; i < m; i++) if(po[i] < po[s]) s = i;
    224     for(int i = s; i < m; i++) printf("%.4lf %.4lf
    ", po[i].x, po[i].y);
    225     for(int i = 0; i < s; i++) printf("%.4lf %.4lf
    ", po[i].x, po[i].y);
    226 }
    227 
    228 
    229 int main(){
    230     while(scanf("%d", &n)!=EOF) {
    231         int x,y;
    232         for(int i = 0; i < n; i++) {
    233             scanf("%d %d", &x, &y);
    234             p[i] = Point(x,y);
    235         }
    236         build_graph();
    237     }
    238     return 0;
    239 }
    View Code
  • 相关阅读:
    Auto Complete with Redis
    The Secret To 10 Million Concurrent Connections -The Kernel Is The Problem, Not The Solution
    Introducing Resque
    ORACLE定期清理INACTIVE会话
    dba_profiles
    Spring事务配置的五种方式
    Dev GridControl数据导出格式问题
    ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
    使用SplitContainer控件
    关于jdk配置正确但是tomcat服务器启动时一闪而过的解决办法
  • 原文地址:https://www.cnblogs.com/yijiull/p/7616798.html
Copyright © 2011-2022 走看看