zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence

    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    程序分析:此题也是求最长公共子序列。和上一篇很相似,基本可以套用模板同样是DP。在处理时可以选择字符的读取从第一个位置开始,或者把 i 号字符的状态存储到i+1号位置去,这样就从1号开始处理了,判定是就是 s1[i-1] == s1[j-1]。

    程序代码:

    #include <cstring>
    #include <cstdlib>
    #include <cstdio> 
    #include<iostream>
    #define Max( a, b ) (a) > (b) ? (a) : (b) 
    using namespace std;
    
    char s1[1005], s2[1005]; 
    int dp[1005][1005];
    int main()
    {
        int len1, len2;   
        while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
        {        
            memset( dp, 0, sizeof(dp) );  
            len1 = strlen( s1+1 ), len2 = strlen( s2+1 );    
            for( int i = 1; i <= len1; ++i )    
            {      
                for( int j = 1; j <= len2; ++j )        
                {               if( s1[i] == s2[j] )          
                {                   dp[i][j] = dp[i-1][j-1] + 1;    
                }                 else                
                {               
                    
                    dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );     
                }
                }
            }  
            printf( "%d
    ", dp[len1][len2] );  
        }   
        return 0; 
    }
  • 相关阅读:
    asp.net正则匹配嵌套Html标签
    sql语句插入百万测试数据
    js判断网页是真静态还是伪静态的方法
    sql自动创建表并复制数据
    百度地图API-搜索地址、定位、点击获取经纬度并标注
    kindeditor自定义插件插入视频代码
    mongo 取随机100条数据写入Excel
    python实现RSA加密和签名以及分段加解密的方案
    装饰器写法
    大转盘抽奖概率 固定每个区域的中奖几率
  • 原文地址:https://www.cnblogs.com/yilihua/p/4731229.html
Copyright © 2011-2022 走看看