zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence

    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    程序分析:此题也是求最长公共子序列。和上一篇很相似,基本可以套用模板同样是DP。在处理时可以选择字符的读取从第一个位置开始,或者把 i 号字符的状态存储到i+1号位置去,这样就从1号开始处理了,判定是就是 s1[i-1] == s1[j-1]。

    程序代码:

    #include <cstring>
    #include <cstdlib>
    #include <cstdio> 
    #include<iostream>
    #define Max( a, b ) (a) > (b) ? (a) : (b) 
    using namespace std;
    
    char s1[1005], s2[1005]; 
    int dp[1005][1005];
    int main()
    {
        int len1, len2;   
        while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
        {        
            memset( dp, 0, sizeof(dp) );  
            len1 = strlen( s1+1 ), len2 = strlen( s2+1 );    
            for( int i = 1; i <= len1; ++i )    
            {      
                for( int j = 1; j <= len2; ++j )        
                {               if( s1[i] == s2[j] )          
                {                   dp[i][j] = dp[i-1][j-1] + 1;    
                }                 else                
                {               
                    
                    dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );     
                }
                }
            }  
            printf( "%d
    ", dp[len1][len2] );  
        }   
        return 0; 
    }
  • 相关阅读:
    进程和程序的区别
    【Docker】5. 常用命令 — 镜像命令
    【Docker】4. 运行镜像的流程、docker工作原理
    【Docker】3. 配置阿里云镜像加速
    【Docker】2. Docker的架构介绍、安装与卸载 (CentOS 7)
    【Docker】Docker概述
    【Git】5. 远程库(GitHub)相关操作
    【Git】4. 团队内、跨团队协作机制
    【Git】3. Git重要特性-分支操作,合并冲突详解
    线性插值编写可视化代码
  • 原文地址:https://www.cnblogs.com/yilihua/p/4731229.html
Copyright © 2011-2022 走看看