zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence

    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    程序分析:此题也是求最长公共子序列。和上一篇很相似,基本可以套用模板同样是DP。在处理时可以选择字符的读取从第一个位置开始,或者把 i 号字符的状态存储到i+1号位置去,这样就从1号开始处理了,判定是就是 s1[i-1] == s1[j-1]。

    程序代码:

    #include <cstring>
    #include <cstdlib>
    #include <cstdio> 
    #include<iostream>
    #define Max( a, b ) (a) > (b) ? (a) : (b) 
    using namespace std;
    
    char s1[1005], s2[1005]; 
    int dp[1005][1005];
    int main()
    {
        int len1, len2;   
        while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
        {        
            memset( dp, 0, sizeof(dp) );  
            len1 = strlen( s1+1 ), len2 = strlen( s2+1 );    
            for( int i = 1; i <= len1; ++i )    
            {      
                for( int j = 1; j <= len2; ++j )        
                {               if( s1[i] == s2[j] )          
                {                   dp[i][j] = dp[i-1][j-1] + 1;    
                }                 else                
                {               
                    
                    dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );     
                }
                }
            }  
            printf( "%d
    ", dp[len1][len2] );  
        }   
        return 0; 
    }
  • 相关阅读:
    4.练习
    『Java面试题总结
    『Maven + Junit + Jacoco』单元测试覆盖率
    『Linux』命令
    『ElasticSearch』安装、健康值检查
    『类型转换』Object转Map、Map转Object
    『ElasticSearch』排序报错
    MD5加密解密网址总结
    汉字编码的理解
    ASCII码的理解
  • 原文地址:https://www.cnblogs.com/yilihua/p/4731229.html
Copyright © 2011-2022 走看看