传送门:
http://poj.org/problem?id=1050
To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 52306 | Accepted: 27646 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
Source
分析:
给你一个N*N的数字矩阵
问你子矩阵的最大和是多少
非常的类似最大子段和问题
dp[i][j]:表示从第i列到j列的子矩阵的最大和
那么在第i列到第j列中
第一行的和就看成一个一个数
第二行的和也是看成一个数
第n行的和也是看成一个数
在这些一维线性的数里面找最大的子段和
比如样例:
第列到第四列
(-2-7+0)=-9
(2-6+2)=-4
(1-4+1)=-2
(8+0-2)=6
在-9,-4,-2,6里面找最大的子段和,看出来是6
那么6就是2列到4列的最大子矩阵和
i列:从1到n
j列:从i到n
code:
#include <iostream> #include <cstdio> #include<stdio.h> #include<algorithm> #include<cstring> #include<math.h> #include<memory> #include<queue> #include<vector> using namespace std; #define max_v 105 #define INF 99999999 int dp1[max_v][max_v];//起始i列 终止j列的max int dp2[max_v];//最大子段和的dp,代表以第i个数结尾的最大子合和值 int a[max_v][max_v]; int f(int j1,int j2,int i)//j1列到j2列,i行上数字的和 { int sum=0; for(int j=j1;j<=j2;j++) { sum+=a[i][j]; } return sum; } int main() { int n; while(~scanf("%d",&n)) { for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&a[i][j]); memset(dp1,0,sizeof(dp1)); dp1[1][1]=a[1][1]; int result=-INF; for(int i=1;i<=n;i++) { for(int j=i;j<=n;j++) { memset(dp2,0,sizeof(dp2)); dp2[1]=f(i,j,1); int maxv=dp2[1]; for(int k=2;k<=n;k++) { int x=0; if(dp2[k-1]>0) x=dp2[k-1]; dp2[k]=x+f(i,j,k); maxv=max(maxv,dp2[k]); } dp1[i][j]=maxv; result=max(result,dp1[i][j]); } } printf("%d ",result); } return 0; }