zoukankan      html  css  js  c++  java
  • Codeforces Round #370 (Div. 2) A

    Description

    There are n integers b1, b2, ..., bn written in a row. For all i from 1 to n, values ai are defined by the crows performing the following procedure:

    • The crow sets ai initially 0.
    • The crow then adds bi to ai, subtracts bi + 1, adds the bi + 2 number, and so on until the n'th number. Thus, ai = bi - bi + 1 + bi + 2 - bi + 3....

    Memory gives you the values a1, a2, ..., an, and he now wants you to find the initial numbers b1, b2, ..., bn written in the row? Can you do it?

    Input

    The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of integers written in the row.

    The next line contains n, the i'th of which is ai ( - 109 ≤ ai ≤ 109) — the value of the i'th number.

    Output

    Print n integers corresponding to the sequence b1, b2, ..., bn. It's guaranteed that the answer is unique and fits in 32-bit integer type.

    Examples
    Input
    5
    6 -4 8 -2 3
    Output
    2 4 6 1 3 
    Input
    5
    3 -2 -1 5 6
    Output
    1 -3 4 11 6 
    Note

    In the first sample test, the crows report the numbers 6, - 4, 8, - 2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence 2 4 6 1 3 satisfies the reports. For example, 6 = 2 - 4 + 6 - 1 + 3, and  - 4 = 4 - 6 + 1 - 3.

    In the second sample test, the sequence 1,  - 3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.

    题意:告诉你 ai = bi - bi + 1 + bi + 2 - bi + 3 ,和b的序列,求a的序列

    解法:反过来就好了,会发现规律都是相加

    #include<bits/stdc++.h>
    using namespace std;
    int a[100005];
    int n,m;
    int b[100005];
    int main()
    {
        cin>>n;
        for(int i=1;i<=n;i++)
        {
            cin>>a[i];
        }
        int cot=1;
        a[n+1]=0;
        for(int i=n;i>=1;i--)
        {
            b[cot++]=a[i+1]+a[i];
        }
        for(int i=cot-1;i>=1;i--)
        {
            cout<<b[i]<<endl;
        }
        return 0;
    }
    

      

  • 相关阅读:
    Java 高级文件处理
    drf10
    drf9
    drf8
    drf7
    drf6
    drf5
    drf4
    drf3
    drf2
  • 原文地址:https://www.cnblogs.com/yinghualuowu/p/5866222.html
Copyright © 2011-2022 走看看