zoukankan      html  css  js  c++  java
  • 特征提取代码总结

    来自http://download.csdn.net/source/3208155#acomment

    特征提取代码总结

    颜色提取

    Ø 颜色直方图提取:

    Code:

    #include <cv.h>

    #include <highgui.h>

    #include <iostream>

    using namespace std;

     

     int main( int argc, char** argv )

    {

    IplImage * src= cvLoadImage("E:\\Download\\test1.jpg",1);

     

    IplImage* hsv = cvCreateImage( cvGetSize(src), 8, 3 );

    IplImage* h_plane = cvCreateImage( cvGetSize(src), 8, 1 );

    IplImage* s_plane = cvCreateImage( cvGetSize(src), 8, 1 );

    IplImage* v_plane = cvCreateImage( cvGetSize(src), 8, 1 );

    IplImage* planes[] = { h_plane, s_plane };

     

    /** H 分量划分为16个等级,S分量划分为8个等级*/

    int h_bins = 16, s_bins = 8;

    int hist_size[] = {h_bins, s_bins};

     

    /** H 分量的变化范围*/

    float h_ranges[] = { 0, 180 }; 

     

    /** S 分量的变化范围*/

    float s_ranges[] = { 0, 255 };

    float* ranges[] = { h_ranges, s_ranges };

     

    /** 输入图像转换到HSV颜色空间*/

    cvCvtColor( src, hsv, CV_BGR2HSV );

    cvCvtPixToPlane( hsv, h_plane, s_plane, v_plane, 0 );

     

    /** 创建直方图,二维, 每个维度上均分*/

    CvHistogram * hist = cvCreateHist( 2, hist_size, CV_HIST_ARRAY, ranges, 1 );

    /** 根据H,S两个平面数据统计直方图*/

    cvCalcHist( planes, hist, 0, 0 );

     

    /** 获取直方图统计的最大值,用于动态显示直方图*/

    float max_value;

    cvGetMinMaxHistValue( hist, 0, &max_value, 0, 0 );

     

     

    /** 设置直方图显示图像*/

    int height = 240;

    int width = (h_bins*s_bins*6);

    IplImage* hist_img = cvCreateImage( cvSize(width,height), 8, 3 );

    cvZero( hist_img );

     

    /** 用来进行HSV到RGB颜色转换的临时单位图像*/

    IplImage * hsv_color = cvCreateImage(cvSize(1,1),8,3);

    IplImage * rgb_color = cvCreateImage(cvSize(1,1),8,3);

    int bin_w = width / (h_bins * s_bins);

    for(int h = 0; h < h_bins; h++)

    {

    for(int s = 0; s < s_bins; s++)

    {

    int i = h*s_bins + s;

    /** 获得直方图中的统计次数,计算显示在图像中的高度*/

    float bin_val = cvQueryHistValue_2D( hist, h, s );

    int intensity = cvRound(bin_val*height/max_value);

     

    /** 获得当前直方图代表的颜色,转换成RGB用于绘制*/

    cvSet2D(hsv_color,0,0,cvScalar(h*180.f / h_bins,s*255.f/s_bins,255,0));

    cvCvtColor(hsv_color,rgb_color,CV_HSV2BGR);

    CvScalar color = cvGet2D(rgb_color,0,0);

     

    cvRectangle( hist_img, cvPoint(i*bin_w,height),

    cvPoint((i+1)*bin_w,height - intensity),

    color, -1, 8, 0 );

    }

    }

     

    cvNamedWindow( "Source", 1 );

    cvShowImage( "Source", src );

     

    cvNamedWindow( "H-S Histogram", 1 );

    cvShowImage( "H-S Histogram", hist_img );

     

    cvWaitKey(0);

    }

    运行效果截图:

                                                                                 

    形状提取

    Ø Candy算子对边缘提取:

    Code

     

    #include "cv.h"

    #include "cxcore.h"

    #include "highgui.h" 

    int main( int argc, char** argv ) 

    {

        //声明IplImage指针

             IplImage* pImg = NULL; 

        IplImage* pCannyImg = NULL; 

        //载入图像,强制转化为Gray

    pImg = cvLoadImage( "E:\\Download\\test.jpg", 0); 

    //为canny边缘图像申请空间

    pCannyImg = cvCreateImage(cvGetSize(pImg), IPL_DEPTH_8U, 1);

    //canny边缘检测

    cvCanny(pImg, pCannyImg, 50, 150, 3); 

    //创建窗口

    cvNamedWindow("src", 1);

    cvNamedWindow("canny",1);

    //显示图像

    cvShowImage( "src", pImg ); 

    cvShowImage( "canny", pCannyImg ); 

    //等待按键

    cvWaitKey(0);

    //销毁窗口

    cvDestroyWindow( "src" ); 

    cvDestroyWindow( "canny" );

    //释放图像

    cvReleaseImage( &pImg ); 

    cvReleaseImage( &pCannyImg );

    return 0;

    运行效果截图:

    Ø 角点提取:

    Code

     

    #include <stdio.h>

    #include "cv.h"

    #include "highgui.h"

    #define MAX_CORNERS 100

    int main(void)

    {

    int cornersCount=MAX_CORNERS;//得到的角点数目

    CvPoint2D32f corners[MAX_CORNERS];//输出角点集合

    IplImage *srcImage = 0,*grayImage = 0,*corners1 = 0,*corners2 = 0;

    int i;

    CvScalar color = CV_RGB(255,0,0);

    cvNamedWindow("image",1);

    //Load the image to be processed

    srcImage = cvLoadImage("E:\\Download\\1.jpg",1);

    grayImage = cvCreateImage(cvGetSize(srcImage),IPL_DEPTH_8U,1);

    //copy the source image to copy image after converting the format

    //复制并转为灰度图像

    cvCvtColor(srcImage,grayImage,CV_BGR2GRAY);

    //create empty images os same size as the copied images

    //两幅临时位浮点图像,cvGoodFeaturesToTrack会用到

    corners1 = cvCreateImage(cvGetSize(srcImage),IPL_DEPTH_32F,1);

    corners2 = cvCreateImage(cvGetSize(srcImage),IPL_DEPTH_32F,1);

    cvGoodFeaturesToTrack(grayImage,corners1,corners2,corners,&cornersCount,0.05,

    30,//角点的最小距离是

    0,//整个图像

    3,0,0.4);

    printf("num corners found: %d\n",cornersCount);

    //开始画出每个点

    if (cornersCount>0)

    {

    for (i=0;i<cornersCount;i++)

    {

    cvCircle(srcImage,cvPoint((int)(corners[i].x),(int)(corners[i].y)),2,color,2,CV_AA,0);

    }

    }

    cvShowImage("image",srcImage);

    cvSaveImage("imagedst.png",srcImage);

    cvReleaseImage(&srcImage);

    cvReleaseImage(&grayImage);

    cvReleaseImage(&corners1);

    cvReleaseImage(&corners2);

    cvWaitKey(0);

    return 0;

    运行效果截图:

     

    Ø Hough直线提取:

    Code

     

    #include <cv.h>

    #include <highgui.h>

    #include <math.h>

     

    int main(int argc, char** argv)

    {

        IplImage* src = cvLoadImage( "E:\\Download\\2.jpg" , 0 );

        IplImage* dst;

        IplImage* color_dst;

        CvMemStorage* storage = cvCreateMemStorage(0);

        CvSeq* lines = 0;

        int i;

     

        if( !src )

            return -1;

     

        dst = cvCreateImage( cvGetSize(src), 8, 1 );

        color_dst = cvCreateImage( cvGetSize(src), 8, 3 );

     

        cvCanny( src, dst, 50, 200, 3 );

        cvCvtColor( dst, color_dst, CV_GRAY2BGR );

    #if 0

        lines = cvHoughLines2( dst, storage, CV_HOUGH_STANDARD, 1, CV_PI/180, 100, 0, 0 );

     

        for( i = 0; i < MIN(lines->total,100); i++ )

        {

            float* line = (float*)cvGetSeqElem(lines,i);

            float rho = line[0];

            float theta = line[1];

            CvPoint pt1, pt2;

            double a = cos(theta), b = sin(theta);

            double x0 = a*rho, y0 = b*rho;

            pt1.x = cvRound(x0 + 1000*(-b));

            pt1.y = cvRound(y0 + 1000*(a));

            pt2.x = cvRound(x0 - 1000*(-b));

            pt2.y = cvRound(y0 - 1000*(a));

            cvLine( color_dst, pt1, pt2, CV_RGB(255,0,0), 3, CV_AA, 0 );

        }

    #else

        lines = cvHoughLines2( dst, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI/180, 50, 50, 10 );

        for( i = 0; i < lines->total; i++ )

        {

            CvPoint* line = (CvPoint*)cvGetSeqElem(lines,i);

            cvLine( color_dst, line[0], line[1], CV_RGB(255,0,0), 3, CV_AA, 0 );

        }

    #endif

        cvNamedWindow( "Source", 1 );

        cvShowImage( "Source", src );

     

        cvNamedWindow( "Hough", 1 );

        cvShowImage( "Hough", color_dst );

     

        cvWaitKey(0);

     

        return 0;

    }

    运行效果截图:

     

    Ø Hough圆提取:

    Code

    #include <cv.h>

    #include <highgui.h>

    #include <math.h>

    #include <iostream>

    using namespace std;

    int main(int argc, char** argv)

    {

        IplImage* img;

    img=cvLoadImage("E:\\Download\\3.jpg", 1);

     IplImage* gray = cvCreateImage( cvGetSize(img), 8, 1 );

         CvMemStorage* storage = cvCreateMemStorage(0);

         cvCvtColor( img, gray, CV_BGR2GRAY );

         cvSmooth( gray, gray, CV_GAUSSIAN, 5, 15 );

    // smooth it, otherwise a lot of false circles may be detected

    CvSeq* circles = cvHoughCircles( gray, storage, CV_HOUGH_GRADIENT, 2, gray->height/4, 200, 100 );

        int i;

         for( i = 0; i < circles->total; i++ )

         {

              float* p = (float*)cvGetSeqElem( circles, i );

              cvCircle( img, cvPoint(cvRound(p[0]),cvRound(p[1])), 3, CV_RGB(0,255,0), -1, 8, 0 );

     cvCircle( img, cvPoint(cvRound(p[0]),cvRound(p[1])), cvRound(p[2]), CV_RGB(255,0,0), 3, 8, 0 );

              cout<<"圆心坐标x= "<<cvRound(p[0])<<endl<<"圆心坐标y= "<<cvRound(p[1])<<endl;

              cout<<"半径="<<cvRound(p[2])<<endl; 

         }

         cout<<"圆数量="<<circles->total<<endl;

         cvNamedWindow( "circles", 1 );

         cvShowImage( "circles", img );

         cvWaitKey(0);

      

        return 0;

    }

    运行效果截图:

     

    Ø Hough矩形提取:

    Code

     

    #include "cv.h"

    #include "highgui.h"

    #include <stdio.h>

    #include <math.h>

    #include <string.h>

    int thresh = 50;

    IplImage* img = 0;

    IplImage* img0 = 0;

    CvMemStorage* storage = 0;

    CvPoint pt[4];const char* wndname = "Square Detection Demo"

    double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )

    {    

    double dx1 = pt1->x - pt0->x; 

    double dy1 = pt1->y - pt0->y;  

    double dx2 = pt2->x - pt0->x;  

    double dy2 = pt2->y - pt0->y;    

    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);

    CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )

    {  

    CvSeq* contours;

    int i, c, l, N = 11;  

    CvSize sz = cvSize( img->width & -2, img->height & -2 );

    IplImage* timg = cvCloneImage( img );

    IplImage* gray = cvCreateImage( sz, 8, 1 ); 

    IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );  

    IplImage* tgray;   

    CvSeq* result;  

    double s, t;  

    CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );   

    cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));   

    // down-scale and upscale the image to filter out the noise 

    cvPyrDown( timg, pyr, 7 );  

    cvPyrUp( pyr, timg, 7 );   

    tgray = cvCreateImage( sz, 8, 1 );  

    // find squares in every color plane of the image 

    for( c = 0; c < 3; c++ )  

    {       

    cvSetImageCOI( timg, c+1 );     

    cvCopy( timg, tgray, 0 );           

    for( l = 0; l < N; l++ )     

    {          

    if( l == 0 )     

    {               

    cvCanny( tgray, gray, 0, thresh, 5 );        

    cvDilate( gray, gray, 0, 1 );      

    }           

    else       

    {             

    cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );

    }                       

    cvFindContours( gray, storage, &contours, sizeof(CvContour),CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );          

    while( contours )    

    {              

      result = cvApproxPoly( contours, sizeof(CvContour), storage,CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 ); 

    if( result->total == 4 && fabs(cvContourArea(result,CV_WHOLE_SEQ)) > 1000 &&  cvCheckContourConvexity(result) )  

    {               

    s = 0;      

    for( i = 0; i < 5; i++ )  

    {                   

    if( i >= 2 )           

    {               

    t = fabs(angle( (CvPoint*)cvGetSeqElem( result, i ),(CvPoint*)cvGetSeqElem( result, i-2 ),(CvPoint*)cvGetSeqElem( result, i-1 )));   

    s = s > t ? s : t;     

    }         

    }                                            

    if( s < 0.3 )                      

    for( i = 0; i < 4; i++ )              

    cvSeqPush( squares,                    

    (CvPoint*)cvGetSeqElem( result, i ));     

    }                                      

    contours = contours->h_next;      

    }   

    }

    cvReleaseImage( &gray );   

    cvReleaseImage( &pyr );  

    cvReleaseImage( &tgray );  

    cvReleaseImage( &timg );   

    return squares;

    }  

    // the function draws all the squares in the image

    void drawSquares( IplImage* img, CvSeq* squares )

    {   

    CvSeqReader reader;   

    IplImage* cpy = cvCloneImage( img );   

    int i;       

    cvStartReadSeq( squares, &reader, 0 );     

    for( i = 0; i < squares->total; i += 4 )  

    {       

    CvPoint* rect = pt;    

    int count = 4;      

    memcpy( pt, reader.ptr, squares->elem_size ); 

    CV_NEXT_SEQ_ELEM( squares->elem_size, reader ); 

    memcpy( pt + 1, reader.ptr, squares->elem_size );     

    CV_NEXT_SEQ_ELEM( squares->elem_size, reader );   

    memcpy( pt + 2, reader.ptr, squares->elem_size );   

    CV_NEXT_SEQ_ELEM( squares->elem_size, reader );     

    memcpy( pt + 3, reader.ptr, squares->elem_size );  

    CV_NEXT_SEQ_ELEM( squares->elem_size, reader );         

    cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );

    }        

    cvShowImage( wndname, cpy );  

    cvReleaseImage( &cpy );

    }

    void on_trackbar( int a )

    {   

    if( img )    

    drawSquares( img, findSquares4( img, storage ) );

    }

    char* names[] = { "1.jpg", 0 };

    int main(int argc, char** argv)

    {    

    int i, c; 

    storage = cvCreateMemStorage(0);    

    for( i = 0; names[i] != 0; i++ )   

    {     

    img0 = cvLoadImage( names[i], 1 );   

    if( !img0 )    

    {        

    printf("Couldn't load %s\n", names[i] );    

    continue;     

    }     

    img = cvCloneImage( img0 );       

         cvNamedWindow( wndname, 1 );     

    cvCreateTrackbar( "canny thresh", wndname, &thresh, 1000, on_trackbar );     

    on_trackbar(0);       

    c = cvWaitKey(0);     

    cvReleaseImage( &img );    

    cvReleaseImage( &img0 );       

    cvClearMemStorage( storage );      

    if( c == 27 )       

    break;   

    }       

    cvDestroyWindow( wndname );   

    return 0;

    运行效果截图:

     

    Ø 边缘直方图提取:

    Code

      

    #include "cv.h"

    #include "highgui.h"

    #include <stdio.h>

    #include <ctype.h>

    #define PI 3.14

    int main()

    {

        IplImage *src = 0;  // source imagre

        IplImage *histimg = 0; // histogram image 

        CvHistogram *hist = 0; // define multi_demention histogram

        IplImage* canny;

        CvMat* canny_m;

        IplImage* dx; // the sobel x difference 

        IplImage* dy; // the sobel y difference 

        CvMat* gradient; // value of gradient

        CvMat* gradient_dir; // direction of gradient

        CvMat* dx_m; // format transform to matrix

        CvMat* dy_m;

        CvMat* mask;

        CvSize  size;

        IplImage* gradient_im;

        int i,j;

        float theta;

        

        int hdims = 8;     // 划分HIST的个数,越高越精确

        float hranges_arr[] = {-PI/2,PI/2}; // 直方图的上界和下界

        float* hranges = hranges_arr;

                                                                                                                                                                                                                                                                  

        float max_val;  // 

        int bin_w;

        

        src=cvLoadImage("E:\\Download\\test.jpg", 0); // force to gray image

           if(src==0) return -1;

        

        cvNamedWindow( "Histogram", 0 );

        //cvNamedWindow( "src", 0);

        size=cvGetSize(src);

        canny=cvCreateImage(cvGetSize(src),8,1);//边缘图像

        dx=cvCreateImage(cvGetSize(src),32,1);//x方向上的差分//此处的数据类型为U 不怕溢出吗?

        dy=cvCreateImage(cvGetSize(src),32,1);

        gradient_im=cvCreateImage(cvGetSize(src),32,1);//梯度图像

        canny_m=cvCreateMat(size.height,size.width,CV_32FC1);//边缘矩阵

        dx_m=cvCreateMat(size.height,size.width,CV_32FC1);

        dy_m=cvCreateMat(size.height,size.width,CV_32FC1);

        gradient=cvCreateMat(size.height,size.width,CV_32FC1);//梯度矩阵

        gradient_dir=cvCreateMat(size.height,size.width,CV_32FC1);//梯度方向矩阵

        mask=cvCreateMat(size.height,size.width,CV_32FC1);//掩码

        cvCanny(src,canny,60,180,3);//边缘检测

        cvConvert(canny,canny_m);//把图像转换为矩阵

        cvSobel(src,dx,1,0,3);// 一阶X方向的图像差分:dx

        cvSobel(src,dy,0,1,3);// 一阶Y方向的图像差分:dy

        cvConvert(dx,dx_m);

        cvConvert(dy,dy_m);

        cvAdd(dx_m,dy_m,gradient); // value of gradient//梯度不是等于根号下x的导数的平方加上y导数的平方吗?

        cvDiv(dx_m,dy_m,gradient_dir); // direction

        for(i=0;i<size.height;i++)

        for(j=0;j<size.width;j++)

        {

          if(cvmGet(canny_m,i,j)!=0 && cvmGet(dx_m,i,j)!=0)//此行是什么意思?只看边缘上的方向?

          {

             theta=cvmGet(gradient_dir,i,j);

             theta=atan(theta);

             cvmSet(gradient_dir,i,j,theta);  

          }

          else

          {

             cvmSet(gradient_dir,i,j,0);

          }

             

        }

       hist = cvCreateHist( 1, &hdims, CV_HIST_ARRAY, &hranges, 1 );  

    // 创建一个指定尺寸的直方图,并返回创建的直方图指针

       histimg = cvCreateImage( cvSize(320,200), 8, 3 ); // 创建一个图像,通道

       cvZero( histimg ); // 清;

       cvConvert(gradient_dir,gradient_im);//把梯度方向矩阵转化为图像

       cvCalcHist( &gradient_im, hist, 0, canny ); // 计算直方图

       cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 );  // 只找最大值

       cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 ); 

    // 缩放bin 到区间[0,255] ,比例系数

       cvZero( histimg );

       bin_w = histimg->width /16;  // hdims: 条的个数,则bin_w 为条的宽度

        

        // 画直方图

        for( i = 0; i < hdims; i++ )

        {

           double val = ( cvGetReal1D(hist->bins,i)*histimg->height/255 );

    // 返回单通道数组的指定元素 返回直方图第i条的大小,val为histimg中的i条的高度

            CvScalar color = CV_RGB(255,255,0); //(hsv2rgb(i*180.f/hdims);//直方图颜色

            cvRectangle( histimg, cvPoint(100+i*bin_w,histimg->height),cvPoint(100+(i+1)*bin_w,(int)(histimg->height - val)), color, 1, 8, 0 ); // 画直方图——画矩形,左下角,右上角坐标

         }

        

        cvShowImage( "src", src);

        cvShowImage( "Histogram", histimg );

        cvWaitKey(0);

        cvDestroyWindow("src");

        cvDestroyWindow("Histogram");

        cvReleaseImage( &src );

        cvReleaseImage( &histimg );

        cvReleaseHist ( &hist );

        

        return 0;

    }

    运行效果截图

     

    Ø 视频流中边缘检测:

    Code

     

    #include "highgui.h"

    #include "cv.h"

    #include "stdio.h"

    #include <ctype.h> 

    int main(int argc,char ** argv)

    {

           IplImage * laplace = 0;

           IplImage * colorlaplace = 0;

           IplImage * planes[3] = {0,0,0};

           CvCapture *capture = 0;

          //从摄像头读取

           /*if(argc == 1 ||( argc==2 && strlen(argv[1])==1 && isdigit(argv[1][0]) ))

               capture = cvCaptureFromCAM(argc == 2 ? argv[1][0] -'0':0);*/

           //从文件中读取

          /* else if(argc == 2)*/

               capture = cvCaptureFromAVI("1.avi");

           if(!capture)

           {

               fprintf(stderr,"Could not initialize capturing...\n");

               return -1;

           }

           cvNamedWindow("Laplacian",1);

           cvNamedWindow("video",1);

           //循环捕捉,直到用户按键跳出循环体

           for(;;)

           {

                IplImage * frame =0;    //抓起一祯

                frame = cvQueryFrame(capture);

                if(!frame)

                     break;

                if(!laplace)

                {

                   //创建图像

                   for(int i=0;i<3;i++)

                   planes[i] = cvCreateImage(cvSize(frame->width,frame->height),IPL_DEPTH_8U,1);

                   laplace = cvCreateImage(cvSize(frame->width,frame->height),IPL_DEPTH_16S,1);

                 colorlaplace=cvCreateImage(cvSize(frame->width,frame->height),IPL_DEPTH_8U,3);

                }

                 cvCvtPixToPlane(frame,planes[0],planes[1],planes[2],0);

                 for(int i=0;i<3;i++)

                 {

                    //交换,如通道变换

                    cvLaplace(planes[i],laplace,3);

                    //使用线性变换转换输入函数元素成为无符号整形

                    cvConvertScaleAbs(laplace,planes[i],1,0);

                  }

                cvCvtPlaneToPix(planes[0],planes[1],planes[2],0,colorlaplace);

                //结构相同(- 顶左结构,1 - 底左结构)

                colorlaplace->origin = frame->origin;

               //高斯滤波,平滑图像

               // cvSmooth(colorlaplace, colorlaplace, CV_GAUSSIAN, 1, 0, 0);

               //形态学滤波,闭运算

               cvDilate(colorlaplace, colorlaplace, 0, 1);//膨胀

               cvErode(colorlaplace, colorlaplace, 0, 1);//腐蚀

               cvShowImage("video", frame);

               cvShowImage("Laplacian",colorlaplace);

               if(cvWaitKey(10)>0)

                   break;

           }

           cvReleaseCapture(&capture);

           cvDestroyWindow("Laplacian");

           cvDestroyWindow("video");

           return 0;

    }

    运行效果截图

     

    Ø 纹理提取:

    Code:

     

    #include <iostream>

    #include <math.h>

    #include "cv.h"

    #include "highgui.h"

    int main(int argc, char* argv[])

    {

    int tmp[8]={0};

    int sum=0;int k=0;

    IplImage* img,*dst;

    img=cvLoadImage("E:\\Download\\2.jpg",0);

    CvScalar s;

    cvNamedWindow("img",NULL);

    cvNamedWindow("dst",NULL);

    cvShowImage("img",img);

    uchar* data=(uchar*)img->imageData;

    int step=img->widthStep;

    dst=cvCreateImage(cvSize(img->width,img->height),img->depth,1);

    dst->widthStep=img->widthStep;

    for(int i=1;i<img->height-1;i++)

    for(int j=1;j<img->width-1;j++)

    {

    if(data[(i-1)*step+j-1]>data[i*step+j]) tmp[0]=1;

    else tmp[0]=0;

    if(data[i*step+(j-1)]>data[i*step+j]) tmp[1]=1;

    else tmp[1]=0;

    if(data[(i+1)*step+(j-1)]>data[i*step+j]) tmp[2]=1;

    else tmp[2]=0;

    if (data[(i+1)*step+j]>data[i*step+j]) tmp[3]=1;

    else tmp[3]=0;

    if (data[(i+1)*step+(j+1)]>data[i*step+j]) tmp[4]=1;

    else tmp[4]=0;

    if(data[i*step+(j+1)]>data[i*step+j]) tmp[5]=1;

    else tmp[5]=0;

    if(data[(i-1)*step+(j+1)]>data[i*step+j]) tmp[6]=1;

    else tmp[6]=0;

    if(data[(i-1)*step+j]>data[i*step+j]) tmp[7]=1;

    else tmp[7]=0;

    for(k=0;k<=7;k++)

    sum+=abs(tmp[k]-tmp[k+1]);

    sum=sum+abs(tmp[7]-tmp[0]);

    if (sum<=2)

    s.val[0]=(tmp[0]*128+tmp[1]*64+tmp[2]*32+tmp[3]*16+tmp[4]*8+tmp[5]*4+tmp[6]*2+tmp[7]);

    else s.val[0]=59; 

    cvSet2D(dst,i,j,s);

    }

    cvShowImage("dst",dst);

    cvWaitKey(-1);

    return 0;

    }

    运行效果截图:

  • 相关阅读:
    vuejs中使用echart图表
    锚点链接
    如何动态修改网页的标题(title)?
    如何为图片添加热点链接?(map + area)
    cookie
    如何为你的网站添加标志性的图标(头像)呢?
    图片拖拽上传至服务器
    js定时器之setTimeout的使用
    input[type=file]中使用ajaxSubmit来图片上传
    input[type=file]样式更改以及图片上传预览
  • 原文地址:https://www.cnblogs.com/yingying0907/p/2129472.html
Copyright © 2011-2022 走看看