zoukankan      html  css  js  c++  java
  • 基于Opencv的MeanShift跟踪算法实现

    转载请标明出处:http://blog.csdn.net/koriya/archive/2008/11/21/3347365.aspx

    #include "cv.h"
    #include "highgui.h"
    #include <stdio.h>
    #include <ctype.h>

    IplImage *image = 0, *hsv = 0, *hue = 0, *mask = 0, *backproject = 0, *histimg = 0;//用HSV中的Hue分量进行跟踪
    CvHistogram *hist = 0;//直方图类

    int backproject_mode = 0;
    int select_object = 0;
    int track_object = 0;
    int show_hist = 1;
    CvPoint origin;
    CvRect selection;
    CvRect track_window;
    CvBox2D track_box; // Meanshift跟踪算法返回的Box类
    CvConnectedComp track_comp;
    int hdims = 50; // 划分直方图bins的个数,越多越精确

    float hranges_arr[] = {0,180};//像素值的范围
    float* hranges = hranges_arr;//用于初始化CvHistogram类
    int vmin = 10, vmax = 256, smin = 30;

    void on_mouse( int event, int x, int y, int flags,void *NotUsed)//该函数用于选择跟踪目标
    {
    if( !image )
    return;

    if( image->origin )
    y = image->height - y;

    if( select_object )//如果处于选择跟踪物体阶段,则对selection用当前的鼠标位置进行设置
    {
    selection.x = MIN(x,origin.x);
    selection.y = MIN(y,origin.y);
    selection.width = selection.x + CV_IABS(x - origin.x);
    selection.height = selection.y + CV_IABS(y - origin.y);

    selection.x = MAX( selection.x, 0 );
    selection.y = MAX( selection.y, 0 );
    selection.width = MIN( selection.width, image->width );
    selection.height = MIN( selection.height, image->height );
    selection.width -= selection.x;
    selection.height -= selection.y;

    }

    switch( event )
    {
    case CV_EVENT_LBUTTONDOWN://开始点击选择跟踪物体
    origin = cvPoint(x,y);
    selection = cvRect(x,y,0,0);//坐标
    select_object = 1;//表明开始进行选取
    break;
    case CV_EVENT_LBUTTONUP:
    select_object = 0;//选取完成
    if( selection.width > 0 && selection.height > 0 )
    track_object = -1;//如果选择物体有效,则打开跟踪功能

    break;
    }
    }


    CvScalar hsv2rgb( float hue )//用于将Hue量转换成RGB量
    {
    int rgb[3], p, sector;
    static const int sector_data[][3]={{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}};
    hue *= 0.033333333333333333333333333333333f;
    sector = cvFloor(hue);
    p = cvRound(255*(hue - sector));
    p ^= sector & 1 ? 255 : 0;

    rgb[sector_data[sector][0]] = 255;
    rgb[sector_data[sector][1]] = 0;
    rgb[sector_data[sector][2]] = p;

    return cvScalar(rgb[2], rgb[1], rgb[0],0);//返回对应的颜色值
    }

    int main( int argc, char** argv )
    {
    CvCapture* capture = 0;
    IplImage* frame = 0;

    if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
    capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );//打开摄像头
    else if( argc == 2 )
    capture = cvCaptureFromAVI( argv[1] );//打开AVI文件

    if( !capture )
    {
    fprintf(stderr,"Could not initialize capturing...\n");//打开视频流失败处理
    return -1;
    }

    printf( "Hot keys: \n\tESC - quit the program\n\tc - stop the tracking\n\tb - switch to/from backprojection view\n\th - show/hide object histogram\nTo initialize tracking, select the object with mouse\n" );//打印出程序功能列表
    cvNamedWindow( "CamShiftDemo", 1 );//建立视频窗口
    cvSetMouseCallback( "CamShiftDemo", on_mouse ); // 设置鼠标回调函数

    cvCreateTrackbar( "Vmin", "CamShiftDemo", &vmin, 256, 0 );//建立滑动条
    cvCreateTrackbar( "Vmax", "CamShiftDemo", &vmax, 256, 0 );
    cvCreateTrackbar( "Smin", "CamShiftDemo", &smin, 256, 0 );

    for(;;)//进入视频帧处理主循环
    {
    int i, bin_w, c;
    frame = cvQueryFrame( capture );
    if( !frame )
    break;

    if( !image )//刚开始先建立一些缓冲区
    {

    image = cvCreateImage( cvGetSize(frame), 8, 3 );//
    image->origin = frame->origin;
    hsv = cvCreateImage( cvGetSize(frame), 8, 3 );
    hue = cvCreateImage( cvGetSize(frame), 8, 1 );
    mask = cvCreateImage( cvGetSize(frame), 8, 1 );//分配掩膜图像空间
    backproject = cvCreateImage( cvGetSize(frame), 8, 1 );//分配反向投影图空间,大小一样,单通道
    hist = cvCreateHist( 1, &hdims, CV_HIST_ARRAY, &hranges, 1 ); //分配建立直方图空间

    histimg = cvCreateImage( cvSize(320,200), 8, 3 );//分配用于画直方图的空间
    cvZero( histimg );//背景为黑色
    }

    cvCopy( frame, image, 0 );
    cvCvtColor( image, hsv, CV_BGR2HSV ); // 把图像从RGB表色系转为HSV表色系

    if( track_object )// 如果当前有需要跟踪的物体

    {
    int _vmin = vmin, _vmax = vmax;

    cvInRangeS( hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0),cvScalar(180,256,MAX(_vmin,_vmax),0), mask ); //制作掩膜板,只处理像素值为H:0~180,S:smin~256,V:vmin~vmax之间的部分
    cvSplit( hsv, hue, 0, 0, 0 ); // 取得H分量

    if( track_object < 0 )//如果需要跟踪的物体还没有进行属性提取,则进行选取框类的图像属性提取
    {
    float max_val = 0.f;
    cvSetImageROI( hue, selection ); // 设置原选择框
    cvSetImageROI( mask, selection ); // 设置Mask的选择框

    cvCalcHist( &hue, hist, 0, mask ); // 得到选择框内且满足掩膜板内的直方图

    cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 );
    cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 ); // 对直方图转为0~255
    cvResetImageROI( hue ); // remove ROI
    cvResetImageROI( mask );
    track_window = selection;
    track_object = 1;

    cvZero( histimg );
    bin_w = histimg->width / hdims;

    for( i = 0; i < hdims; i++ )
    {
    int val = cvRound(
    cvGetReal1D(hist->bins,i)*histimg->height/255 );
    CvScalar color = hsv2rgb(i*180.f/hdims);
    cvRectangle( histimg, cvPoint(i*bin_w,histimg->height),
    cvPoint((i+1)*bin_w,histimg->height - val),color, -1, 8, 0 );//画直方图到图像空间
    }
    }

    cvCalcBackProject( &hue, backproject, hist ); // 得到hue的反向投影图

    cvAnd( backproject, mask, backproject, 0 );得到反向投影图mask内的内容
    cvCamShift( backproject, track_window,cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ),&track_comp, &track_box );//使用MeanShift算法对backproject中的内容进行搜索,返回跟踪结果
    track_window = track_comp.rect;//得到跟踪结果的矩形框

    if( backproject_mode )
    cvCvtColor( backproject, image, CV_GRAY2BGR ); // 显示模式
    if( image->origin )
    track_box.angle = -track_box.angle;
    cvEllipseBox( image, track_box, CV_RGB(255,0,0), 3, CV_AA, 0 );//画出跟踪结果的位置
    }

    if( select_object && selection.width > 0 && selection.height > 0 )//如果正处于物体选择,画出选择框
    {
    cvSetImageROI( image, selection );
    cvXorS( image, cvScalarAll(255), image, 0 );
    cvResetImageROI( image );
    }

    cvShowImage( "CamShiftDemo", image );//显示视频和直方图
    cvShowImage( "Histogram", histimg );

    c = cvWaitKey(10);
    if( c == 27 )
    break;

    switch( c )
    {
    case 'b':
    backproject_mode ^= 1;
    break;
    case 'c':
    track_object = 0;
    cvZero( histimg );
    break;
    case 'h':
    show_hist ^= 1;
    if( !show_hist )
    cvDestroyWindow( "Histogram" );
    else
    cvNamedWindow( "Histogram", 1 );
    break;
    default:
    ;
    }
    }

    cvReleaseCapture( &capture );
    cvDestroyWindow("CamShiftDemo");

    return 0;
    }

  • 相关阅读:
    hihoCoder 1308:搜索二·骑士问题(BFS预处理)
    BZOJ 1085:[SCOI2005]骑士精神(A*算法)
    HDU 6181:Two Paths(A* + SPFA)
    Linux常用命令之用户权限管理chmod、chown、chgrp、umask命令讲解
    Linux常用命令之cp、mv、rm、cat、more、head、tail、ln命令讲解
    Linux常用命令之ls、cd、pwd、mkdir命令讲解
    第一次在虚拟机启动我们的Linux系统
    Linux学习环境搭建
    centos7重启apache、nginx、mysql、php-fpm命令
    返回一条最近一次cURL操作明确的文本的错误信息。
  • 原文地址:https://www.cnblogs.com/yingying0907/p/2204912.html
Copyright © 2011-2022 走看看