zoukankan      html  css  js  c++  java
  • openCv学习札记(二)—cv:Mat学习

    openCv学习笔记(二)—cv::Mat学习

    由于在写上一篇图像的数据结构时,发现自己只知道CvMat,竟然还有Mat数据结构,真是无知了,看了这么多程序,貌似没有看到这个结构。有可能那些程序都是些老版本的例子,这是在2.0以后加上的,所以我也得紧跟呀!以下是自己的学习心得。。。。

    一、Mat简介

        在2001年刚刚出现的时候,OpenCV基于 C 语言接口而建。为了在内存(memory)中存放图像,当时采用名为 IplImage 的C语言结构体,时至今日这仍出现在大多数的旧版教程和教学材料。但这种方法必须接受C语言所有的不足,这其中最大的不足要数手动内存管理,其依据是用户要为开辟和销毁内存负责。虽然对于小型的程序来说手动管理内

    一、Mat简介

        在2001年刚刚出现的时候,OpenCV基于 C 语言接口而建。为了在内存(memory)中存放图像,当时采用名为 IplImage 的C语言结构体,时至今日这仍出现在大多数的旧版教程和教学材料。但这种方法必须接受C语言所有的不足,这其中最大的不足要数手动内存管理,其依据是用户要为开辟和销毁内存负责。虽然对于小型的程序来说手动管理内存不是问题,但一旦代码开始变得越来越庞大,你需要越来越多地纠缠于这个问题,而不是着力解决你的开发目标。

       幸运的是,C++出现了,并且带来类的概念,这给用户带来另外一个选择:自动的内存管理(不严谨地说)。这是一个好消息,如果C++完全兼容C的话,这个变化不会带来兼容性问题。为此,OpenCV在2.0版本中引入了一个新的C++接口,利用自动内存管理给出了解决问题的新方法。使用这个方法,你不需要纠结在管理内存上,而且你的代码会变得简洁(少写多得)。但C++接口唯一的不足是当前许多嵌入式开发系统只支持C语言。所以,当目标不是这种开发平台时,没有必要使用 方法(除非你是自找麻烦的受虐狂码农)。

       关于 Mat ,首先要知道的是你不必再手动地(1)为其开辟空间(2)在不需要时立即将空间释放。但手动地做还是可以的:大多数OpenCV函数仍会手动地为输出数据开辟空间。当传递一个已经存在的 Mat 对象时,开辟好的矩阵空间会被重用。也就是说,我们每次都使用大小正好的内存来完成任务。

       基本上讲 Mat 是一个类,由两个数据部分组成:矩阵头(包含矩阵尺寸,存储方法,存储地址等信息)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同矩阵可以是不同的维数)的指针。矩阵头的尺寸是常数值,但矩阵本身的尺寸会依图像的不同而不同,通常比矩阵头的尺寸大数个数量级。因此,当在程序中传递图像并创建拷贝时,大的开销是由矩阵造成的,而不是信息头。OpenCV是一个图像处理库,囊括了大量的图像处理函数,为了解决问题通常要使用库中的多个函数,因此在函数中传递图像是家常便饭。同时不要忘了我们正在讨论的是计算量很大的图像处理算法,因此,除非万不得已,我们不应该拷贝 的图像,因为这会降低程序速度。

    二、Mat的基本操作

       这里展示一个例子解释一下Mat的基本操作

    #include<cv.h>
    #include<highgui.h>
    #include<iostream>
    using namespace cv;
    using namespace std;
    int main()
    {
    	/*********************************Mat基本操作-矩阵*******************************************/
        //二维三通道矩阵建立
        Mat M(2,2, CV_8UC3, Scalar(0,0,255)); //使用构造函数创建矩阵
    	/*
    	CV_8UC3 表示使用8位的 unsigned char 型,每个像素由三个元素组成三通道,初始化为(0,0,255)
    	*/
        cout << "M = " << endl << " " << M << endl << endl; //格式化输出
        //三维
    	int sz[3] = {3,3,3}; 
        Mat L(3,sz, CV_8UC(1), Scalar::all(0));
    	/*
    	超过两维的矩阵:指定维数,然后传递一个指向一个数组的指针,这个数组包含每个维度的尺寸;其余的相同
    	*/
        cout << "L = " << endl << " " << M << endl << endl; //格式化输出
    
    	/********************************************Mat基本操作-图像*******************************/
    	Mat A, C;      // 只创建信息头部分
        A=imread("D:\\openCV\\openCVProject\\openCv笔记\\openCv笔记\\test.jpg", CV_LOAD_IMAGE_COLOR); // 这里为矩阵开辟内存
        Mat B(A);                // 使用拷贝构造函数
        C = A;                  // 赋值运算符
        /*
    	拷贝构造函数和赋值函数 只拷贝信息头和矩阵指针
    	*/
    
        Mat D (A, Rect(10, 10, 100, 100) ); //选取A中一个矩形区域,即只访问其矩形区域的信息头,只是创建信息头
    	Mat E = A(cv::Range::all(), Range(1,3)); // 创建访问边界的信息头。
        /*
        要创建一个感兴趣区域( ROI ),你只需要创建包含边界信息的信息头
    	*/
    
        Mat F = A.clone();//复制图像,包括数据
        Mat G;
        A.copyTo(G);
        /*
    	拷贝矩阵本身(不只是信息头和矩阵指针),
    	*/
    
    	//测试
    	namedWindow( "a", CV_WINDOW_AUTOSIZE );
    	namedWindow( "c", CV_WINDOW_AUTOSIZE );
    	
    	imshow( "a", D);
    	imshow( "c", E );
    
    	
    	/****************************************图像的读取、处理和保存**************************************/
    	  Mat image;
    	 image = imread( "D:\\openCV\\openCVProject\\openCv笔记\\openCv笔记\\test.jpg", CV_LOAD_IMAGE_COLOR);//导入图像
    
    	 if( !image.data )
    	 {
    	    cout<< " No image data \n " ;
    	    return -1;
    	 }
    
    	 Mat gray_image;
    	 cvtColor( image, gray_image, CV_BGR2GRAY );//转化为灰度图
    
    	 imwrite( "http://images.cnblogs.com/Gray_Image.jpg", gray_image );//写入图像
    
    	 namedWindow( "source", CV_WINDOW_AUTOSIZE );
    	 namedWindow( "Gray image", CV_WINDOW_AUTOSIZE );
    
    	 imshow( "source", image );
    	 imshow( "Gray image", gray_image );
         /*******************************************************************************************/
    	 waitKey(0);
    	 return 0;
    }

      对于Mat数据结构,在对图像进行处理时要注意:

     

    • OpenCV函数中输出图像的内存分配是自动完成的(如果不特别指定的话)。
    • 使用OpenCV的C++接口时不需要考虑内存释放问题。
    • 赋值运算符和拷贝构造函数( ctor )只拷贝信息头。
    • 使用函数 clone() 或者 copyTo() 来拷贝一副图像的矩阵

      这只是对Mat数据的简单认识。。在以后的例子中学习吧。。。

      转自:http://www.myexception.cn/program/567745.html

  • 相关阅读:
    django.db.utils.OperationalError: (1071, 'Specified key was too long; max key length is 767 bytes');
    mysql的utf8与utf8mb4 异同;utf8mb4_unicode_ci 与 utf8mb4_general_ci 如何选择
    /etc/skel 目录作用
    react组件引用时的default常见错误
    Java效率工具之Lombok
    Java问题定位之如何借助线程堆栈进行问题分析
    Java线程堆栈分析
    Java问题定位之Java线程堆栈分析
    Java项目性能瓶颈分析及定位(八)——Java线程堆栈分析(五)
    SpringMVC的各种参数绑定方式
  • 原文地址:https://www.cnblogs.com/yingying0907/p/2718245.html
Copyright © 2011-2022 走看看