zoukankan      html  css  js  c++  java
  • Kafka的API实战案例

                  Kafka的API实战案例

                                       作者:尹正杰

    版权声明:原创作品,谢绝转载!否则将追究法律责任。 

    一.Producer API

    1>.消息发送流程

      Kafka的Producer发送消息采用的是异步发送的方式。在消息发送的过程中,涉及到了两个线程——main线程和Sender线程,以及一个线程共享变量——RecordAccumulator。
    
      main线程将消息发送给RecordAccumulator,
    
      Sender线程不断从RecordAccumulator中拉取消息发送到Kafka broker。
    
      相关参数:
        batch.size:
          只有数据积累到batch.size之后,sender才会发送数据。
        linger.ms:
          如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据。

    2>.异步发送数据-不带回调函数的API案例

    package com.yinzhengjie.kafka.producer;
    
    import org.apache.kafka.clients.producer.KafkaProducer;
    import org.apache.kafka.clients.producer.ProducerConfig;
    import org.apache.kafka.clients.producer.ProducerRecord;
    import org.apache.kafka.common.serialization.StringSerializer;
    
    import java.util.Properties;
    
    public class CustomProducer {
    
        public static void main(String[] args){
    
            /**
             *  需要用到的类:
             *      KafkaProducer:
             *          需要创建一个生产者对象,用来发送数据
             *      ProducerConfig:
             *           获取所需的一系列配置参数
             *      ProducerRecord:
             *          每条数据都要封装成一个ProducerRecord对象
             */
    
            //创建Properties对象,用于配置kafka集群的信息
            Properties props = new Properties();
            props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"kafka201.yinzhengjie.com:9092,kafka202.yinzhengjie.com:9092,kafka203.yinzhengjie.com:9092");
            props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
            props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
            props.put(ProducerConfig.ACKS_CONFIG,"all");
            props.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);
            props.put(ProducerConfig.LINGER_MS_CONFIG,1);
    
            //创建生产者对象
            KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);
    
            //调用生产者send方法发送数据
            for (int i = 1;i<=10000;i++){
                producer.send(new ProducerRecord<String, String>("yinzhengjie-kafka",i + "","message-" + i));
            }
    
            //关闭生产者
            producer.close();
        }
    }
    案例代码
    [root@kafka201.yinzhengjie.com ~]# kafka-console-consumer.sh --bootstrap-server kafka201.yinzhengjie.com:9092 --topic yinzhengjie-kafka
    ......
    message-9402
    message-9412
    message-9447
    message-9453
    message-9462
    message-9475
    message-9477
    message-9486
    message-9493
    message-9528
    message-9545
    message-9548
    message-9613
    message-9616
    message-9622
    message-9644
    message-9646
    message-9655
    message-9662
    message-9689
    message-9700
    message-9727
    message-9746
    message-9780
    message-9783
    message-9784
    message-9791
    message-9806
    message-9812
    message-9829
    message-9854
    message-9864
    message-9898
    message-9901
    message-9951
    message-9994
    [root@kafka201.yinzhengjie.com ~]# kafka-console-consumer.sh --bootstrap-server kafka201.yinzhengjie.com:9092 --topic yinzhengjie-kafka      #运行上面的生产者代码时建议先启动一个消费者可以立即看到效果

    3>.异步发送数据-带回调函数的API

    package com.yinzhengjie.kafka.producer;
    
    import org.apache.kafka.clients.producer.*;
    import org.apache.kafka.common.serialization.StringSerializer;
    
    import java.util.Properties;
    
    public class ProducerCallback {
        public static void main(String[] args){
    
            /**
             *  需要用到的类:
             *      KafkaProducer:
             *          需要创建一个生产者对象,用来发送数据
             *      ProducerConfig:
             *           获取所需的一系列配置参数
             *      ProducerRecord:
             *          每条数据都要封装成一个ProducerRecord对象
             */
    
            //创建Properties对象,用于配置kafka集群的信息
            Properties props = new Properties();
            props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"kafka201.yinzhengjie.com:9092,kafka202.yinzhengjie.com:9092,kafka203.yinzhengjie.com:9092");
            props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
            props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
            props.put(ProducerConfig.ACKS_CONFIG,"all");
            props.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);
            props.put(ProducerConfig.LINGER_MS_CONFIG,1);
    
            //创建生产者对象
            KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);
    
            //调用生产者send方法发送数据
            for (int i = 100;i<=200;i++){
                producer.send(new ProducerRecord<String, String>("yinzhengjie-kafka", Integer.toString(i), "Message-callback-" + Integer.toString(i)),(recordMetadata, exception) -> {
                    /**
                     *      回调函数会在producer收到ack时调用,为异步调用,该方法有两个参数,分别是RecordMetadata和Exception,如果Exception为null,说明消息发送成功,如果Exception不为null,说明消息发送失败。
                     *      温馨提示:
                     *          消息发送失败会自动重试,不需要我们在回调函数中手动重试。
                     */
                    if (exception == null){
                        System.out.println("message send successful!");
                    }else {
                        exception.printStackTrace();
                    }
                });
            }
    
            //关闭生产者
            producer.close();
        }
    }
    案例代码
    [root@kafka201.yinzhengjie.com ~]# kafka-console-consumer.sh --bootstrap-server kafka201.yinzhengjie.com:9092 --topic yinzhengjie-kafka
    Message-callback-107
    Message-callback-114
    Message-callback-127
    Message-callback-141
    Message-callback-153
    Message-callback-174
    Message-callback-180
    Message-callback-191
    Message-callback-104
    Message-callback-133
    Message-callback-168
    Message-callback-109
    Message-callback-120
    Message-callback-121
    Message-callback-124
    Message-callback-135
    Message-callback-144
    Message-callback-145
    Message-callback-156
    Message-callback-181
    Message-callback-111
    Message-callback-147
    Message-callback-161
    Message-callback-165
    Message-callback-185
    Message-callback-189
    Message-callback-129
    Message-callback-148
    Message-callback-151
    Message-callback-152
    Message-callback-175
    Message-callback-192
    Message-callback-134
    Message-callback-154
    Message-callback-186
    Message-callback-105
    Message-callback-142
    Message-callback-187
    Message-callback-194
    Message-callback-137
    Message-callback-140
    Message-callback-150
    Message-callback-102
    Message-callback-115
    Message-callback-123
    Message-callback-143
    Message-callback-163
    Message-callback-197
    Message-callback-106
    Message-callback-118
    Message-callback-139
    Message-callback-146
    Message-callback-162
    Message-callback-167
    Message-callback-171
    Message-callback-176
    Message-callback-116
    Message-callback-130
    Message-callback-131
    Message-callback-136
    Message-callback-182
    Message-callback-195
    Message-callback-112
    Message-callback-119
    Message-callback-126
    Message-callback-172
    Message-callback-184
    Message-callback-113
    Message-callback-138
    Message-callback-149
    Message-callback-158
    Message-callback-169
    Message-callback-198
    Message-callback-103
    Message-callback-122
    Message-callback-125
    Message-callback-190
    Message-callback-196
    Message-callback-199
    Message-callback-108
    Message-callback-159
    Message-callback-166
    Message-callback-177
    Message-callback-193
    Message-callback-101
    Message-callback-110
    Message-callback-200
    Message-callback-157
    Message-callback-160
    Message-callback-173
    Message-callback-178
    Message-callback-188
    Message-callback-100
    Message-callback-117
    Message-callback-128
    Message-callback-132
    Message-callback-155
    Message-callback-164
    Message-callback-170
    Message-callback-179
    Message-callback-183
    [root@kafka201.yinzhengjie.com ~]# kafka-console-consumer.sh --bootstrap-server kafka201.yinzhengjie.com:9092 --topic yinzhengjie-kafka

     

    4>.Future测试案例

    package com.yinzhengjie.kafka.producer;
    
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    import java.util.concurrent.Future;
    
    public class TestFuture {
    
        public static void main(String[] args) throws Exception{
            //创建一个线程池
            ExecutorService executor = Executors.newCachedThreadPool();
    
            //提交一个线程
            Future<?> future = executor.submit(new Runnable() {
                @Override
                public void run() {
                    for (int i = 0; i < 10; i++) {
                        System.out.println("i = " + i);
                    }
                }
            });
    
            //调用下面的代码后会阻塞当前线程
            future.get();
    
            System.out.println("=================");
    
            //停止线程池
            executor.shutdown();
        }
    }
    案例代码

    5>.同步发送数据

    package com.yinzhengjie.kafka.producer;
    
    import org.apache.kafka.clients.producer.KafkaProducer;
    import org.apache.kafka.clients.producer.ProducerConfig;
    import org.apache.kafka.clients.producer.ProducerRecord;
    import org.apache.kafka.clients.producer.RecordMetadata;
    import org.apache.kafka.common.serialization.StringSerializer;
    
    import java.util.Properties;
    import java.util.concurrent.ExecutionException;
    
    public class SyncProducer {
        public static void main(String[] args) throws ExecutionException, InterruptedException {
    
            /**
             *  需要用到的类:
             *      KafkaProducer:
             *          需要创建一个生产者对象,用来发送数据
             *      ProducerConfig:
             *           获取所需的一系列配置参数
             *      ProducerRecord:
             *          每条数据都要封装成一个ProducerRecord对象
             */
    
            //创建Properties对象,用于配置kafka集群的信息
            Properties props = new Properties();
            props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"kafka201.yinzhengjie.com:9092,kafka202.yinzhengjie.com:9092,kafka203.yinzhengjie.com:9092");
            props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
            props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
            props.put(ProducerConfig.ACKS_CONFIG,"all");
            props.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);
            props.put(ProducerConfig.LINGER_MS_CONFIG,1000);    //设置发送数据的间隔时间为1秒,单位默认是毫秒
    
            //创建生产者对象
            KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);
    
            //调用生产者send方法发送数据
            for (int i = 1;i<=10;i++){
                /**
                 * 同步发送的意思就是,一条消息发送之后,会阻塞当前线程,直至返回ack。
                 * 由于send方法返回的是一个Future对象,根据Futrue对象的特点,我们也可以实现同步发送的效果,只需在调用Future对象的get方发即可。
                 */
                RecordMetadata metadata = producer.send(new ProducerRecord<String, String>("yinzhengjie-kafka", Integer.toString(i), "message-" + i)).get();
                System.out.println("offset = " + metadata.offset());
            }
    
            //关闭生产者
            producer.close();
        }
    }
    案例代码

    二.Consumer API

      Consumer消费数据时的可靠性是很容易保证的,因为数据在Kafka中是持久化的,故不用担心数据丢失问题。
    
      由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
      所以offset的维护是Consumer消费数据是必须考虑的问题。

    1>.手动提交offset

    package com.yinzhengjie.kafka.consumer;
    
    import org.apache.kafka.clients.consumer.ConsumerConfig;
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    import org.apache.kafka.common.serialization.StringDeserializer;
    
    import java.util.Arrays;
    import java.util.Properties;
    
    public class CustomConsumer {
        public static void main(String[] args){
            /**
             *  需要用到的类:
             *      KafkaConsumer:
             *          需要创建一个消费者对象,用来消费数据
             *      ConsumerConfig:
             *          获取所需的一系列配置参数
             *      ConsuemrRecord:
             *          每条数据都要封装成一个ConsumerRecord对象
             */
    
            //创建Properties对象,用于配置kafka集群的信息
            Properties props = new Properties();
            props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"kafka201.yinzhengjie.com:9092,kafka202.yinzhengjie.com:9092,kafka203.yinzhengjie.com:9092");
            props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
            props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
            props.put(ConsumerConfig.GROUP_ID_CONFIG,"yinzhengjie2020");        //指定消费者组,只要group.id相同,就属于同一个消费者组
            props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");       //关闭自动提交offset,默认就是自动提交的,即默认值是true.
    
            //创建消费者
            KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
    
            //订阅topic
            consumer.subscribe(Arrays.asList("yinzhengjie-kafka"));
    
            //调用pull
            while (true){
                ConsumerRecords<String, String> records = consumer.poll(100);
                for (ConsumerRecord<String, String> record : records) {
                    System.out.println("Topic = " + record.topic() +",Offset = " + record.offset() + ",Value = " + record.value());
                }
    
                //手动提交offset,若不手动提交(上面我们已经禁用了自动提交offset功能)当Consumer进程结束后,再次启动时你会发现有重复数据出现哟
                /**
                 * 同步提交offset,该方法有重试机制,一直到提交成功为止。
                 */
                consumer.commitSync();
                /**
                 *  异步提交offset,仅提交一次,并没有失败重试的机制,生产环境中建议推荐使用这种方法,效率较高。
                 *
                 *  温馨提示:
                 *      如果本次提交失败没有关系,当消费下一批数据是会再次触发异步提交,只要下一次提交成功了尽管上一次提交失败也没有任何影响;
                 *      但是异步提交一直失败的话,可能会导致数据重复消费的问题哟~
                 *
                 */
                consumer.commitAsync();
            }
    
        }
    }
    案例代码
    [root@kafka201.yinzhengjie.com ~]# kafka-console-producer.sh --bootstrap-server kafka203.yinzhengjie.com:9092 --topic yinzhengjie-kafka
    >hello
    >world
    >https://www.cnblogs.com/yinzhengjie/
    >
    [root@kafka201.yinzhengjie.com ~]# kafka-console-producer.sh --bootstrap-server kafka203.yinzhengjie.com:9092 --topic yinzhengjie-kafka      #启动生产者

    2>.自动提交offset

    package com.yinzhengjie.kafka.consumer;
    
    import org.apache.kafka.clients.consumer.ConsumerConfig;
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    import org.apache.kafka.common.serialization.StringDeserializer;
    
    import java.util.Arrays;
    import java.util.Properties;
    
    public class AutoConsumer {
        public static void main(String[] args){
            /**
             *  需要用到的类:
             *      KafkaConsumer:
             *          需要创建一个消费者对象,用来消费数据
             *      ConsumerConfig:
             *          获取所需的一系列配置参数
             *      ConsuemrRecord:
             *          每条数据都要封装成一个ConsumerRecord对象
             *
             *  为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。
             *      自动提交offset的相关参数:
             *          enable.auto.commit:
             *              是否开启自动提交offset功能
             *          auto.commit.interval.ms:
             *              自动提交offset的时间间隔
             */
    
            //创建Properties对象,用于配置kafka集群的信息
            Properties props = new Properties();
            props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"kafka201.yinzhengjie.com:9092,kafka202.yinzhengjie.com:9092,kafka203.yinzhengjie.com:9092");
            props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
            props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
            props.put(ConsumerConfig.GROUP_ID_CONFIG,"yinzhengjie2020");        //指定消费者组,只要group.id相同,就属于同一个消费者组
            props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");       //开启自动提交offset,默认就是自动提交的,即默认值是true.
            props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG,"1000");    //指定自动提交offset的时间间隔为1秒
    
            //创建消费者
            KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
    
            //订阅topic
            consumer.subscribe(Arrays.asList("yinzhengjie-kafka"));
    
            //调用pull
            while (true){
                ConsumerRecords<String, String> records = consumer.poll(100);
                for (ConsumerRecord<String, String> record : records) {
                    System.out.printf("Topic = %s, offset = %d, key = %s, value = %s%n", record.topic(),record.offset(), record.key(), record.value());
                }
            }
    
        }
    }
    案例代码
    [root@kafka201.yinzhengjie.com ~]# kafka-console-producer.sh --bootstrap-server kafka203.yinzhengjie.com:9092 --topic yinzhengjie-kafka
    >https://www.cnblogs.com/yinzhengjie/
    >https://home.cnblogs.com/u/yinzhengjie2020
    >hello
    >world
    >
    [root@kafka201.yinzhengjie.com ~]# kafka-console-producer.sh --bootstrap-server kafka203.yinzhengjie.com:9092 --topic yinzhengjie-kafka

    3>.自定义存储offset思路

    package com.yinzhengjie.kafka.consumer;
    
    import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    import org.apache.kafka.common.TopicPartition;
    
    import java.util.Arrays;
    import java.util.Collection;
    import java.util.Properties;
    
    
    
    public class CustomOffsetConsumer {
    
        public static void main(String[] args) {
    
            Properties props = new Properties();
            props.put("bootstrap.servers", "kafka201.yinzhengjie.com:9092,kafka202.yinzhengjie.com:9092,kafka203.yinzhengjie.com:9092");
            props.put("group.id", "yinzhengjie2020");//消费者组,只要group.id相同,就属于同一个消费者组
            props.put("enable.auto.commit", "false");//自动提交offset
            props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
            consumer.subscribe(Arrays.asList("yinzhengjie-kafka"), new ConsumerRebalanceListener() {
    
                //提交当前负责的分区的offset
                @Override
                public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
                    System.out.println("===== 回收的分区 =====");
                    for (TopicPartition partition : partitions) {
                        System.out.printf("Partition = %s%n",partition);
                    }
    
                }
    
                //定位新分配的分区的offset
                @Override
                public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
                    System.out.println("===== 重新分配的分区 =====");
                    for (TopicPartition partition : partitions) {
                        System.out.printf("Partition = %s%n",partition);
                        //下面是伪代码,需要自行实现
    //                    Long offset = getPartitionOffset(partition);
    //                    consumer.seek(partition,offset);
                    }
                }
            });
    
    
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(100);
                for (ConsumerRecord<String, String> record : records) {
                    System.out.printf("Topic = %s, offset = %d,value = %s%n", record.topic(),record.offset(),record.value());
                    //下面是伪代码,需要自行实现
    //                TopicPartition topicPartition = new TopicPartition(record.topic(), record.partition());
    //                commitOffset(topicPartition,record.offset()+1);
                }
            }
        }
    
        //提交offset,根据你的业务场景自行实现功能
        private static void commitOffset(TopicPartition topicPartition, long l) {
    
        }
    
        //获取分区的offset,根据你的业务场景自行实现功能
        private static Long getPartitionOffset(TopicPartition partition) {
            return null;
        }
    
    }
    案例代码

    三.自定义Interceptor

    1>.拦截器原理

      Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。
    
      对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。

      同时,producer允许用户指定多个interceptor按序作用于同一条消息从而形成一个拦截链(interceptor chain)。

      Intercetpor的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括:
        configure(configs):       获取配置信息和初始化数据时调用。     onSend(ProducerRecord):       该方法封装进KafkaProducer.send方法中,即它运行在用户主线程(main)中。
          Producer确保在消息被序列化以及计算分区前调用该方法。
          用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的topic和分区,否则会影响目标分区的计算。
        onAcknowledgement(RecordMetadata, Exception):       该方法会在消息从RecordAccumulator成功发送到Kafka Broker之后,或者在发送过程中失败时调用,并且通常都是在producer回调逻辑触发之前。
          onAcknowledgement运行在producer的IO线程(sender)中,因此不要在该方法中放入很重的逻辑,否则会拖慢producer的消息发送效率。
        close:       关闭interceptor,主要用于执行一些资源清理工作。
      温馨提示:
        如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。
        另外倘若指定了多个interceptor,则producer将按照指定顺序调用它们,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递,这在使用过程中要特别留意。

    2>.拦截器案例

    package com.yinzhengjie.kafka.interceptor;
    
    import org.apache.kafka.clients.producer.ProducerInterceptor;
    import org.apache.kafka.clients.producer.ProducerRecord;
    import org.apache.kafka.clients.producer.RecordMetadata;
    
    import java.util.Map;
    
    
    
    public class CounterInterceptor implements ProducerInterceptor<String, String> {
    
        private long successNum = 0L;
        private long errorNum = 0L;
    
        @Override
        public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
            return record;
        }
    
    
       //统计成功和失败的次数
        @Override
        public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
            if (exception == null) {
                successNum++;
            } else {
                errorNum++;
            }
        }
    
        @Override
        public void close() {
            System.out.println("successNum=" + successNum);
            System.out.println("errorNum=" + errorNum);
    
        }
    
        @Override
        public void configure(Map<String, ?> configs) {
    
        }
    }
    CounterInterceptor.java
    package com.yinzhengjie.kafka.interceptor;
    
    import org.apache.kafka.clients.producer.ProducerInterceptor;
    import org.apache.kafka.clients.producer.ProducerRecord;
    import org.apache.kafka.clients.producer.RecordMetadata;
    
    import java.util.Map;
    
    public class TimeInterceptor implements ProducerInterceptor<String, String> {
    
        //给value增加时间戳功能
        @Override
        public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
            return new ProducerRecord<String, String>(record.topic(), record.partition(), record.timestamp(), record.key(), System.currentTimeMillis() + record.value(), record.headers());
        }
    
        @Override
        public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
    
        }
    
        @Override
        public void close() {
            System.out.println("已为数据添加时间戳功能....");
        }
    
        @Override
        public void configure(Map<String, ?> configs) {
    
        }
    }
    TimeInterceptor.java
    package com.yinzhengjie.kafka.interceptor;
    
    import org.apache.kafka.clients.producer.KafkaProducer;
    import org.apache.kafka.clients.producer.ProducerConfig;
    import org.apache.kafka.clients.producer.ProducerRecord;
    import org.apache.kafka.common.serialization.StringSerializer;
    
    import java.util.ArrayList;
    import java.util.Properties;
    
    public class CustomProducer {
    
        public static void main(String[] args){
    
            /**
             *  需要用到的类:
             *      KafkaProducer:
             *          需要创建一个生产者对象,用来发送数据
             *      ProducerConfig:
             *           获取所需的一系列配置参数
             *      ProducerRecord:
             *          每条数据都要封装成一个ProducerRecord对象
             */
    
            //创建Properties对象,用于配置kafka集群的信息
            Properties props = new Properties();
            props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"kafka201.yinzhengjie.com:9092,kafka202.yinzhengjie.com:9092,kafka203.yinzhengjie.com:9092");
            props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
            props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
            props.put(ProducerConfig.ACKS_CONFIG,"all");
            props.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);
            props.put(ProducerConfig.LINGER_MS_CONFIG,1);
            //指定拦截器
            ArrayList<String> intertceptors = new ArrayList<>();
            intertceptors.add("com.yinzhengjie.kafka.interceptor.TimeInterceptor");
            intertceptors.add("com.yinzhengjie.kafka.interceptor.CounterInterceptor");
            props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,intertceptors);
    
            //创建生产者对象
            KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);
    
            //调用生产者send方法发送数据
            for (int i = 3000;i<=6000;i++){
                producer.send(new ProducerRecord<String, String>("yinzhengjie-kafka",Integer.toString(i),"message-" + i));
            }
    
            //注意哈关闭生产者时会调用拦截器的close()方法哟~
            producer.close();
    
            System.out.println("=====  生产者程序已运行完毕 =====");
        }
    }
    CustomProducer.java

  • 相关阅读:
    kali2018 安装****
    IIS PUT
    解析漏洞总结
    深入理解MVC
    Linux常用命令整理
    nginx视频直播/点播服务干货分享
    记因PHP的内存溢出导致的事故之解决
    五环之歌之PHP分页
    phpstorm 2017.1 激活
    拉伸收缩广告
  • 原文地址:https://www.cnblogs.com/yinzhengjie2020/p/13057627.html
Copyright © 2011-2022 走看看