hash概述
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射pre-image)通过散列算法变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
基本概念
* 对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称碰撞。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数H(key)和处理冲突的方法将一组关键字映象到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“象” 作为记录在表中的存储位置,这种表便称为散列表,这一映象过程称为散列造表或散列,所得的存储位置称散列地址。
* 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。
性质
所有散列函数都有如下一个基本特性:如果两个散列值是不相同的(根据同一函数),那么这两个散列值的原始输入也是不相同的。这个特性是散列函数具有确定性的结果。但另一方面,散列函数的输入和输出不是一一对应的,如果两个散列值相同,两个输入值很可能是相同的,但不绝对肯定二者一定相等(可能出现哈希碰撞)。输入一些数据计算出散列值,然后部分改变输入值,一个具有强混淆特性的散列函数会产生一个完全不同的散列值。
典型的散列函数都有无限定义域,比如任意长度的字节字符串,和有限的值域,比如固定长度的比特串。在某些情况下,散列函数可以设计成具有相同大小的定义域和值域间的一一对应。一一对应的散列函数也称为排列。可逆性可以通过使用一系列的对于输入值的可逆“混合”运算而得到。
常用HASH函数
·直接取余法:f(x):= x mod maxM ; maxM一般是不太接近 2^t 的一个质数。
·乘法取整法:f(x):=trunc((x/maxX)*maxlongit) mod maxM,主要用于实数。
·平方取中法:f(x):=(x*x div 1000 ) mod 1000000); 平方后取中间的,每位包含信息比较多。
构造方法
(详细构造方法可以参考hash函数中的【哈希表的构造方法】)
1.直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a·key + b,其中a和b为常数(这种散列函数叫做自身函数)
2. 数字分析法
3. 平方取中法
4. 折叠法
5. 随机数法
6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p,p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。
哈希函数
(1)余数法:先估计整个哈希表中的表项目数目大小。然后用这个估计值作为除数去除每个原始值,得到商和余数。用余数作为哈希值。因为这种方法产生冲突的可能性相当大,因此任何搜索算法都应该能够判断冲突是否发生并提出取代算法。
(2)折叠法:这种方法是针对原始值为数字时使用,将原始值分为若干部分,然后将各部分叠加,得到的最后四个数字(或者取其他位数的数字都可以)来作为哈希值。
(3)基数转换法:当原始值是数字时,可以将原始值的数制基数转为一个不同的数字。例如,可以将十进制的原始值转为十六进制的哈希值。为了使哈希值的长度相同,可以省略高位数字。
(4)数据重排法:这种方法只是简单的将原始值中的数据打乱排序。比如可以将第三位到第六位的数字逆序排列,然后利用重排后的数字作为哈希值。
哈希函数并不通用,比如在数据库中用能够获得很好效果的哈希函数,用在密码学或错误校验方面就未必可行。在密码学领域有几个著名的哈希函数。这些函数包括MD2、MD4以及MD5,利用散列法将数字签名转换成的哈希值称为信息摘要(message-digest),另外还有安全散列算法(SHA),这是一种标准算法,能够生成更大的(60bit)的信息摘要,有点儿类似于MD4算法。