zoukankan      html  css  js  c++  java
  • 人工智能入门(四):uncertainty&基于统计的学习

    1.belief networks (indenpendence, collider,conditioning / marginalization,connection graph,independence in belief networks,D-separation,uncertain and unreliable evidence)Belief and Markov Networks

    2.inference, general inference(variable elimination,bucket elimination algorithm), message passing idea(sum-product algorithm,`belief propagation' or `dynamic programming',max-product algorithm,loop-cut conditioning) 

    for singly connected graphs: sum-product, max-product;

    for multiply connected graphs: loop-cut conditioning, bucket elimination;

    3.MAP,ML,(KL Divergence),Naive Bayes Classi er,Using a Beta prior

    4.dealing with miss variables: Missing Completely at random (MCAR), Missing at random(MAR),Missing NOT at random (MNAR),Expectation Maximisation(EM algorithm)

    5.sampling(univariate,rejection,multi-variate,ancestral, Gibbs, importance, sequential importance,particle filter)

    6.dynamical models(HMM(filtering, smoothing,prediction),Viterbi, Kalman, particle Filtering (bootstrap filtering)

  • 相关阅读:
    联考20200801 T2 皮卡丘
    联考20200729 T2 划愤
    联考20200801 T1 林海的密码
    联考20200725 T2 Tree
    联考20200721 T1 s1mple
    联考20200730 T2 小B的环
    联考20200730 T1 小B的班级
    联考20200718 T1 因懒无名
    联考20200723 T1 数
    联考20200722 T1 集合划分
  • 原文地址:https://www.cnblogs.com/yizhaoAI/p/9944780.html
Copyright © 2011-2022 走看看