zoukankan      html  css  js  c++  java
  • poj 3169 Layout(差分约束)

    Layout
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6549   Accepted: 3168

    Description

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

    Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

    Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

    Input

    Line 1: Three space-separated integers: N, ML, and MD. 

    Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

    Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

    Output

    Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

    Sample Input

    4 2 1
    1 3 10
    2 4 20
    2 3 3

    Sample Output

    27
    
    
    解题思路:
    1、构造差分约束系统:
    A。B距离不超过D则B-A<=D,
    A,B距离至少为D则A-B<=-D.
    2、若有解则求1和N之间的最短路径:
    比如:A-B<=D1 , B-C<=D2, A-C<=D3 不等式相加得:A-C<=min(D3,D1+D2)。而当A-B<=D时。我们建的边是B->A的。所以我们仅仅要求出1到N的最短距离就可以,假设没有最短距离。则输出-2.
    
    
    #include <iostream>
    #include <cstdio>
    #include <queue>
    using namespace std;
    
    const int maxne = 1000000;
    const int maxnn = 1010;
    const int INF = 0x3f3f3f3f;
    struct edge{
        int u , v , d;
        edge(int a = 0 , int b = 0 , int c = 0){
            u = a , v = b , d = c;
        }
    }e[maxne];
    int head[maxnn] , next[maxne] , cnt , dis[maxnn] , vis[maxnn] , vt[maxnn];
    int N , ML , MD;
    
    void add(int u , int v , int d){
        e[cnt] = edge(u , v , d);
        next[cnt] = head[u];
        head[u] = cnt++;
    }
    
    void initial(){
        for(int i = 0; i < maxnn; i++) head[i] = -1 , dis[i] = INF , vis[i] = 0 , vt[i] = 0;
        for(int i = 0; i < maxne; i++) next[i] = -1;
        cnt = 0;
        for(int i = 1; i < N; i++){
            add(0 , i , 0);
            add(i+1 , i , 0);
        }
        add(0 , N , 0);
        dis[0] = 0;
    }
    
    void readcase(){
        int u , v , d;
        while(ML--){
            scanf("%d%d%d" , &u , &v , &d);
            add(u , v , d);
        }
        while(MD--){
            scanf("%d%d%d" , &u , &v , &d);
            add(v , u , -1*d);
        }
    }
    
    bool SPFA(int start){
        queue<int> q;
        q.push(start);
        vt[start]++;
        while(!q.empty()){
            int u = q.front();
            q.pop();
            vis[u] = 0;
            int n = head[u];
            if(vt[u] > N+1){
                return false;
            }
            while(n != -1){
                int v = e[n].v;
                if(dis[v] > dis[u]+e[n].d){
                    dis[v] = dis[u]+e[n].d;
                    if(vis[v] == 0){
                        vt[v]++;
                        q.push(v);
                        vis[v] = 1;
                    }
                }
                n = next[n];
            }
        }
        return true;
    }
    
    void computing(){
        if(!SPFA(0)){
            printf("-1
    ");
        }else{
            for(int i = 0; i < maxnn; i++) dis[i] = INF;
            dis[1] = 0;
            SPFA(1);
            if(dis[N] == INF){
                printf("-2
    ");
            }else{
                printf("%d
    " , dis[N]);
            }
        }
    }
    
    int main(){
        while(scanf("%d%d%d" , &N , &ML , &MD) != EOF){
            initial();
            readcase();
            computing();
        }
        return 0;
    }
    


  • 相关阅读:
    AJAX中所谓的异步
    前端性能优化方案
    文字超出隐藏
    创建值的两种方式及其区别
    单例模式
    自定义数据属性
    时间字符串的处理
    日期函数及时钟案例
    很low的四位验证码实现
    使用Ajax发送http请求(get&post请求)--转载
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/6881761.html
Copyright © 2011-2022 走看看