zoukankan      html  css  js  c++  java
  • HDU 1018 Big Number 数学题解

    Problem Description
    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
     

    Input
    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
     

    Output
    The output contains the number of digits in the factorial of the integers appearing in the input.
     

    Sample Input
    2 10 20
     

    Sample Output
    7 19

    本题就考查斯特林公式。由于斯特林公式是求解n!

    的近似公式。而本题仅仅须要求解有多少位。

    底层数学原理就是求一个数n的数位能够使用 digits = log10(n)

    然后利用斯特林公式求出n!的近似值就能够利用log10来求得数位了。

    斯特林公式百度百科有,这里不反复了。

    float不能AC的时候,就使用double吧。

    #include <stdio.h>
    #include <math.h>
    const float PI = 3.14159265358979323846f;
    
    inline int getDigits(int n)
    {
    	float num = float(n);
    	int ans = (int)(0.5*log10(2.0*PI*num) + num*(log(num)-1)/log(10.0)) + 1;
    	return ans;
    }
    
    int main()
    {
    	int T, n;
    	scanf("%d", &T);
    	while (T--)
    	{
    		scanf("%d", &n);
    		printf("%d
    ", getDigits(n));
    	}
    	return 0;
    }



  • 相关阅读:
    Linux中使用dd制作文件的.img
    python正则表达式
    使用@property
    Win10添加删除虚拟打印机方法
    jenkins权限
    RedHat7.2下Jenkins的安装配置
    jenkins忘记管理员账号密码的补救方法
    RHEL软件安装
    docker 常用指令(RHLE)
    /var/run/yum.pid 已被锁定,PID 为 4242 的另一个程序正在运行
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/6994265.html
Copyright © 2011-2022 走看看