zoukankan      html  css  js  c++  java
  • Codeforces 240E. Road Repairs 最小树形图+输出路径


    最小树形图裸题,只是须要记录路径

    E. Road Repairs
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    input.txt
    output
    output.txt

    A country named Berland has n cities. They are numbered with integers from 1 to n. City with index 1 is the capital of the country. Some pairs of cities have monodirectional roads built between them. However, not all of them are in good condition. For each road we know whether it needs repairing or not. If a road needs repairing, then it is forbidden to use it. However, the Berland government can repair the road so that it can be used.

    Right now Berland is being threatened by the war with the neighbouring state. So the capital officials decided to send a military squad to each city. The squads can move only along the existing roads, as there's no time or money to build new roads. However, some roads will probably have to be repaired in order to get to some cities.

    Of course the country needs much resources to defeat the enemy, so you want to be careful with what you're going to throw the forces on. That's why the Berland government wants to repair the minimum number of roads that is enough for the military troops to get to any city from the capital, driving along good or repaired roads. Your task is to help the Berland government and to find out, which roads need to be repaired.

    Input

    The first line contains two space-separated integers n and m (1 ≤ n, m ≤ 105) — the number of cities and the number of roads in Berland.

    Next m lines contain three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, ai ≠ bi, 0 ≤ ci ≤ 1), describing the road from city ai to city bi. If ci equals 0, than the given road is in a good condition. If ci equals 1, then it needs to be repaired.

    It is guaranteed that there is not more than one road between the cities in each direction.

    Output

    If even after all roads are repaired, it is still impossible to get to some city from the capital, print  - 1. Otherwise, on the first line print the minimum number of roads that need to be repaired, and on the second line print the numbers of these roads, separated by single spaces.

    The roads are numbered starting from 1 in the order, in which they are given in the input.

    If there are multiple sets, consisting of the minimum number of roads to repair to make travelling to any city from the capital possible, print any of them.

    If it is possible to reach any city, driving along the roads that already are in a good condition, print 0 in the only output line.

    Sample test(s)
    input
    3 2
    1 3 0
    3 2 1
    
    output
    1
    2
    
    input
    4 4
    2 3 0
    3 4 0
    4 1 0
    4 2 1
    
    output
    -1
    
    input
    4 3
    1 2 0
    1 3 0
    1 4 0
    
    output
    0
    
    


    /* ***********************************************
    Author        :CKboss
    Created Time  :2015年07月07日 星期二 22时48分41秒
    File Name     :CF240E.cpp
    ************************************************ */
    
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <string>
    #include <cmath>
    #include <cstdlib>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    
    using namespace std;
    
    const int INF=0x3f3f3f3f;
    const int maxn=2001000;
    
    int n,m;
    
    struct Edge
    {
    	int u,v,cost,id,ru,rv,rcost;
    }edge[maxn];
    
    void add_Edge(int id,int u,int v,int c)
    {
    	edge[id].id=id;
    	edge[id].u=edge[id].ru=u;
    	edge[id].v=edge[id].rv=v;
    	edge[id].cost=edge[id].rcost=c;
    }
    
    int pre[maxn],id[maxn],vis[maxn],in[maxn];
    
    //// !!!!
    int preid[maxn],useE[maxn];
    int eA[maxn],eD[maxn];
    int ex;
    
    int zhuliu(int root,int n,int m,Edge edge[])
    {
    	int ex=m,res=0;
    	while(true)
    	{
    		for(int i=0;i<n;i++) in[i]=INF;
    		for(int i=0;i<m;i++)
    		{
    			if(edge[i].u!=edge[i].v&&edge[i].cost<in[edge[i].v])
    			{
    				pre[edge[i].v]=edge[i].u;
    				in[edge[i].v]=edge[i].cost;
    
    				//// !!!!
    				preid[edge[i].v]=edge[i].id;
    			}
    		}
    		for(int i=0;i<n;i++)
    			if(i!=root&&in[i]==INF) return -1;
    		int tn=0;
    		memset(id,-1,sizeof(id));
    		memset(vis,-1,sizeof(vis));
    		in[root]=0;
    		for(int i=0;i<n;i++)
    		{
    			res+=in[i];
    			int v=i;
    			//// !!!!
    			if(i!=root) useE[preid[i]]++;
    			while(vis[v]!=i&&id[v]==-1&&v!=root)
    			{
    				vis[v]=i; v=pre[v];
    			}
    			if(v!=root&&id[v]==-1)
    			{
    				for(int u=pre[v];u!=v;u=pre[u]) id[u]=tn;
    				id[v]=tn++;
    			}
    		}
    		if(tn==0) break;
    		for(int i=0;i<n;i++)
    			if(id[i]==-1) id[i]=tn++;
    		for(int i=0;i<m;i++)
    		{
    			int v=edge[i].v;
    			edge[i].u=id[edge[i].u];
    			edge[i].v=id[edge[i].v];
    			if(edge[i].u!=edge[i].v)
    			{
    				edge[i].cost-=in[v];
    				//// !!!!
    				eA[ex]=edge[i].id;
    				eD[ex]=preid[v];
    				edge[i].id=ex;
    				ex++;
    			}
    		}
    		n=tn;
    		root=id[root];
    	}
    
    	//// !!!!
    	for(int i=ex-1;i>=m;i--)
    	{
    		if(useE[i])
    		{
    			useE[eA[i]]++; useE[eD[i]]--;
    		}
    	}
    
    	return res;
    }
    
    int main()
    {
    	freopen("input.txt","r",stdin);
    	freopen("output.txt","w",stdout);
        
    	scanf("%d%d",&n,&m);
    
    	for(int i=0,a,b,c;i<m;i++)
    	{
    		scanf("%d%d%d",&a,&b,&c);
    		a--; b--;
    		add_Edge(i,a,b,c);
    	}
    
    	int lens = zhuliu(0,n,m,edge);
    
    	if(lens==0||lens==-1) { printf("%d
    ",lens); return 0; }
    
    	printf("%d
    ",lens);
    	for(int i=0;i<m;i++)
    	{
    		if(useE[i]&&edge[i].rcost)
    			printf("%d ",i+1);
    	}
    	putchar(10);
    
        return 0;
    }


  • 相关阅读:
    Python 【第十三章】 Django 之 FORM
    Django-Model操作数据库(增删改查、连表结构)参考
    Python 【第十二章】 Django 之 Model 数据库操作
    Python 【第十一章】 Django模版
    Python 【第十章】 Django路由
    Ajax操作如何实现跨域请求 (JSONP和CORS实现Ajax跨域的原理)
    浏览器同源政策概述
    Python 【第九章】 Django基础
    python 2.7下的正则将中文分隔符去掉
    python time应用 之时间戳转换
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/7002713.html
Copyright © 2011-2022 走看看