前面已经分析完了Tomcat的启动和关闭过程。本篇就来接着分析一下Tomcat中请求的处理过程。
在開始本文之前,咋们首先来看看一个Http请求处理的过程。普通情况下是浏览器发送http请求->建立Socket连接->通过Socket读取数据->依据http协议解析数据->调用后台服务完毕响应
,具体的流程图如上图所看到的,等读者读完本篇,应该就清楚了上图所表达的意思。Tomcat既是一个HttpServer也是一个Servlet
容器,那么这里必定也涉及到如上过程,首先依据HTTP协议规范解析请求数据,然后将请求转发给Servlet进行处理。因此顺应这种思路,本文也将从Http协议请求解析,请求怎样转发给Servlet两个方面来进行分析。首先来看Http协议请求解析。
Http协议请求解析
在Tomcat启动过程(Tomcat源代码解析三)一文中,我们已经知道Tomcat启动以后。默认情况下会通过org.apache.tomcat.util.net.JIoEndpoint.Acceptor
监听Socket连接。当监听到有Socket连接的时候,就会调用org.apache.tomcat.util.net.JIoEndpoint#processSocket
方法进行处理,以下我们就来看看此方法的代码,为了节省版面,仅仅保留与本文相关的代码。
protected boolean processSocket(Socket socket) { // Process the request from this socket try { SocketWrapper<Socket> wrapper = new SocketWrapper<Socket>(socket); wrapper.setKeepAliveLeft(getMaxKeepAliveRequests()); // During shutdown, executor may be null - avoid NPE if (!running) { return false; } getExecutor().execute(new SocketProcessor(wrapper)); } catch (RejectedExecutionException x) { //exception handler ... return false; } return true; }
通过上面的代码,我们能够看出首先将Socket封装为SocketWrapper,然后通过SocketProcessor来进行处理。由于Tomcat必定面对用户并发请求,因此这里Socket的处理通过新的线程池来处理。接下来我们再来看看SocketProcess的代码。相同省略了一些非核心的代码,代码例如以下:
<span style="color: rgb(102, 102, 102); font-family: 'Open Sans', HelveticaNeue-Light, 'Helvetica Neue Light', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 12.6000003814697px; line-height: 25.2000007629395px; text-align: justify; background-color: rgb(236, 236, 236);">org.apache.tomcat.util.net.JIoEndpoint.SocketProcessor#run</span>
public void run() { boolean launch = false; synchronized (socket) { try { SocketState state = SocketState.OPEN; try { // SSL handshake serverSocketFactory.handshake(socket.getSocket()); } catch (Throwable t) { ExceptionUtils.handleThrowable(t); if (log.isDebugEnabled()) { log.debug(sm.getString("endpoint.err.handshake"), t); } // Tell to close the socket state = SocketState.CLOSED; } if ((state != SocketState.CLOSED)) { if (status == null) { // 1 state = handler.process(socket, SocketStatus.OPEN); } else { state = handler.process(socket,status); } } if (state == SocketState.CLOSED) { // Close socket if (log.isTraceEnabled()) { log.trace("Closing socket:"+socket); } countDownConnection(); try { socket.getSocket().close(); } catch (IOException e) { // Ignore } } else if (state == SocketState.OPEN || state == SocketState.UPGRADING || state == SocketState.UPGRADED){ socket.setKeptAlive(true); socket.access(); launch = true; } else if (state == SocketState.LONG) { socket.access(); waitingRequests.add(socket); } } finally { //other code } } socket = null; // Finish up this request } }默认情况下。代码会执行到标注1的地方,标注1的地方又通过
org.apache.tomcat.util.net.JIoEndpoint.Handler#process
的方法进行处理,而通过前面Tomcat启动的文章,我们已经知道handler属性是在org.apache.coyote.http11.Http11Protocol
的构造方法中初始化的,构造方法例如以下:
public Http11Protocol() { endpoint = new JIoEndpoint(); cHandler = new Http11ConnectionHandler(this); ((JIoEndpoint) endpoint).setHandler(cHandler); setSoLinger(Constants.DEFAULT_CONNECTION_LINGER); setSoTimeout(Constants.DEFAULT_CONNECTION_TIMEOUT); setTcpNoDelay(Constants.DEFAULT_TCP_NO_DELAY); }
从构造方法中,我们能够清楚的看到。事实上初始化了org.apache.coyote.http11.Http11Protocol.Http11ConnectionHandler
的实例,那么接下来我们就来看看它的process方法,由于Http11ConnectionHandler继承了org.apache.coyote.AbstractProtocol.AbstractConnectionHandler
,而自己没有实现process方法。因此会调用到父类的process方法,那么接下来我们就来看看AbstractConnectionHandler的process方法,代码例如以下:
public SocketState process(SocketWrapper<S> socket, SocketStatus status) { Processor<S> processor = connections.remove(socket.getSocket()); if (status == SocketStatus.DISCONNECT && processor == null) { //nothing more to be done endpoint requested a close //and there are no object associated with this connection return SocketState.CLOSED; } socket.setAsync(false); try { if (processor == null) { processor = recycledProcessors.poll(); } if (processor == null) { processor = createProcessor(); } initSsl(socket, processor); SocketState state = SocketState.CLOSED; do { if (status == SocketStatus.DISCONNECT && !processor.isComet()) { // Do nothing here, just wait for it to get recycled // Don't do this for Comet we need to generate an end // event (see BZ 54022) } else if (processor.isAsync() || state == SocketState.ASYNC_END) { state = processor.asyncDispatch(status); } else if (processor.isComet()) { state = processor.event(status); } else if (processor.isUpgrade()) { state = processor.upgradeDispatch(); } else { state = processor.process(socket); } if (state != SocketState.CLOSED && processor.isAsync()) { state = processor.asyncPostProcess(); } if (state == SocketState.UPGRADING) { // Get the UpgradeInbound handler UpgradeInbound inbound = processor.getUpgradeInbound(); // Release the Http11 processor to be re-used release(socket, processor, false, false); // Create the light-weight upgrade processor processor = createUpgradeProcessor(socket, inbound); inbound.onUpgradeComplete(); } } while (state == SocketState.ASYNC_END || state == SocketState.UPGRADING); return state; } catch(java.net.SocketException e) { // exception handler } return SocketState.CLOSED; }
通过查看上面的代码。默认一个新连接的情况下。会调用
org.apache.coyote.Processor#process
方法,而Processor的实例实在org.apache.coyote.AbstractProtocol.AbstractConnectionHandler#createProcessor
中创建的。通过查看createProcessor代码。我们发现是创建了一个org.apache.coyote.http11.Http11Processor的实例,那么接下来,我们就来看看它的process方法,由于Http11Processor继承了AbstractHttp11Processor,终于事实上调用的是AbstractHttp11Processor的process方法。代码例如以下:
public SocketState process(SocketWrapper<S> socketWrapper) throws IOException { RequestInfo rp = request.getRequestProcessor(); rp.setStage(org.apache.coyote.Constants.STAGE_PARSE); // Setting up the I/O // 1 setSocketWrapper(socketWrapper); getInputBuffer().init(socketWrapper, endpoint); getOutputBuffer().init(socketWrapper, endpoint); // Flags error = false; keepAlive = true; comet = false; openSocket = false; sendfileInProgress = false; readComplete = true; if (endpoint.getUsePolling()) { keptAlive = false; } else { keptAlive = socketWrapper.isKeptAlive(); } if (disableKeepAlive()) { socketWrapper.setKeepAliveLeft(0); } while (!error && keepAlive && !comet && !isAsync() && upgradeInbound == null && !endpoint.isPaused()) { // Parsing the request header try { setRequestLineReadTimeout(); //2 if (!getInputBuffer().parseRequestLine(keptAlive)) { if (handleIncompleteRequestLineRead()) { break; } } if (endpoint.isPaused()) { // 503 - Service unavailable response.setStatus(503); error = true; } else { // Make sure that connectors that are non-blocking during // header processing (NIO) only set the start time the first // time a request is processed. if (request.getStartTime() < 0) { request.setStartTime(System.currentTimeMillis()); } keptAlive = true; // Set this every time in case limit has been changed via JMX request.getMimeHeaders().setLimit(endpoint.getMaxHeaderCount()); // Currently only NIO will ever return false here // 3 if (!getInputBuffer().parseHeaders()) { // We've read part of the request, don't recycle it // instead associate it with the socket openSocket = true; readComplete = false; break; } if (!disableUploadTimeout) { setSocketTimeout(connectionUploadTimeout); } } } catch (IOException e) { if (getLog().isDebugEnabled()) { getLog().debug( sm.getString("http11processor.header.parse"), e); } error = true; break; } catch (Throwable t) { ExceptionUtils.handleThrowable(t); UserDataHelper.Mode logMode = userDataHelper.getNextMode(); if (logMode != null) { String message = sm.getString( "http11processor.header.parse"); switch (logMode) { case INFO_THEN_DEBUG: message += sm.getString( "http11processor.fallToDebug"); //$FALL-THROUGH$ case INFO: getLog().info(message); break; case DEBUG: getLog().debug(message); } } // 400 - Bad Request response.setStatus(400); adapter.log(request, response, 0); error = true; } if (!error) { // Setting up filters, and parse some request headers rp.setStage(org.apache.coyote.Constants.STAGE_PREPARE); try { prepareRequest(); } catch (Throwable t) { ExceptionUtils.handleThrowable(t); if (getLog().isDebugEnabled()) { getLog().debug(sm.getString( "http11processor.request.prepare"), t); } // 400 - Internal Server Error response.setStatus(400); adapter.log(request, response, 0); error = true; } } if (maxKeepAliveRequests == 1) { keepAlive = false; } else if (maxKeepAliveRequests > 0 && socketWrapper.decrementKeepAlive() <= 0) { keepAlive = false; } // Process the request in the adapter if (!error) { try { // 4 rp.setStage(org.apache.coyote.Constants.STAGE_SERVICE); adapter.service(request, response); // Handle when the response was committed before a serious // error occurred. Throwing a ServletException should both // set the status to 500 and set the errorException. // If we fail here, then the response is likely already // committed, so we can't try and set headers. if(keepAlive && !error) { // Avoid checking twice. error = response.getErrorException() != null || (!isAsync() && statusDropsConnection(response.getStatus())); } setCometTimeouts(socketWrapper); } catch (InterruptedIOException e) { error = true; } catch (HeadersTooLargeException e) { error = true; // The response should not have been committed but check it // anyway to be safe if (!response.isCommitted()) { response.reset(); response.setStatus(500); response.setHeader("Connection", "close"); } } catch (Throwable t) { ExceptionUtils.handleThrowable(t); getLog().error(sm.getString( "http11processor.request.process"), t); // 500 - Internal Server Error response.setStatus(500); adapter.log(request, response, 0); error = true; } } // Finish the handling of the request rp.setStage(org.apache.coyote.Constants.STAGE_ENDINPUT); if (!isAsync() && !comet) { if (error) { // If we know we are closing the connection, don't drain // input. This way uploading a 100GB file doesn't tie up the // thread if the servlet has rejected it. getInputBuffer().setSwallowInput(false); } endRequest(); } rp.setStage(org.apache.coyote.Constants.STAGE_ENDOUTPUT); // If there was an error, make sure the request is counted as // and error, and update the statistics counter if (error) { response.setStatus(500); } request.updateCounters(); if (!isAsync() && !comet || error) { getInputBuffer().nextRequest(); getOutputBuffer().nextRequest(); } if (!disableUploadTimeout) { if(endpoint.getSoTimeout() > 0) { setSocketTimeout(endpoint.getSoTimeout()); } else { setSocketTimeout(0); } } rp.setStage(org.apache.coyote.Constants.STAGE_KEEPALIVE); if (breakKeepAliveLoop(socketWrapper)) { break; } } rp.setStage(org.apache.coyote.Constants.STAGE_ENDED); if (error || endpoint.isPaused()) { return SocketState.CLOSED; } else if (isAsync() || comet) { return SocketState.LONG; } else if (isUpgrade()) { return SocketState.UPGRADING; } else { if (sendfileInProgress) { return SocketState.SENDFILE; } else { if (openSocket) { if (readComplete) { return SocketState.OPEN; } else { return SocketState.LONG; } } else { return SocketState.CLOSED; } } } }
上面的代码有点长。可是经过分析,我们还是能够看清楚主干。我已经在代码中将主流程通过数字标注了。我们就来一一看看标注了数字的地方:
- 标注1的地方(第7行)将Socket的输入流和输出流通过InternalInputBuffer进行了包装,InternalInputBuffer是在Http11Processor的构造函数中初始化的。
- 标注2的地方(第35行)调用了InternalInputBuffer的parseRequesLine方法解析http请求的请求行。
(关于http请求行和请求头请看下文解释)
- 标注3的地方(第57行)调用了InternalInputBuffer的prarseHeaders方法解析http请求的请求头。解析完了以后,会将http header保存在
org.apache.tomcat.util.http.MimeHeaders
- 标注4的地方(第128行)调用了org.apache.coyote.Adapter#service方法。次方法就会终于调用到详细的Servlet.
对于Http请求行和请求头,大家能够看以下的样例:
GET /contextpath/querystring HTTP/1.1 Host: 127.0.0.1:8080 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:23.0) Gecko/20100101 Firefox/23.0 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en-US,en;q=0.5 Accept-Encoding: gzip, deflate Cookie: JSESSIONID=9F5897FEF3CDBCB234C050C132DCAE52; __atuvc=384%7C39; __utma=96992031.358732763.1380383869.1381468490.1381554710.38; __utmz=96992031.1380383869.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); Hm_lvt_21e144d0df165d6556d664e2836dadfe=1381330561,1381368826,1381395666,1381554711 Connection: keep-alive Cache-Control: max-age=0
在上面的Http协议get请求中,当中请求行就是第一行,GET /contextpath/querystring
HTTP/1.1
,余下的都是请求头。
这里面须要注意依据Http协议的要求,请求行末尾必须是CRLF,而请求行与请求头,以及请求头之间必须用空行隔开,而空行也必须仅仅包括CRLF。
对于Http协议请求头的规范能够參考这里。
通过上面的描写叙述,我们能够整理出例如以下的一个请求解析流程:
org.apache.tomcat.util.net.JIoEndpoint.Acceptor#run ->org.apache.tomcat.util.net.JIoEndpoint.SocketProcessor#run(请求处理线程池中执行) -->org.apache.coyote.AbstractProtocol.AbstractConnectionHandler#process --->org.apache.coyote.http11.AbstractHttp11Processor#process ---->org.apache.coyote.http11.InternalInputBuffer#parseRequestLine ---->org.apache.coyote.http11.InternalInputBuffer#parseHeaders ---->org.apache.catalina.connector.CoyoteAdapter#service
怎样转发到Servlet
上面我们说了一个请求过来是怎样依据http协议解析Socket的数据。终于将生成org.apache.coyote.Request
和org.apache.coyote.Response
。接下来我们就来看看request,reponse是怎样一步步的进入终于的Servlet进行处理的。
这一步的入口就是CoyoteAdapter的service方法。 接下来我们就来看看它的代码:
<span style="color: rgb(102, 102, 102); font-family: 'Open Sans', HelveticaNeue-Light, 'Helvetica Neue Light', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 12.6000003814697px; line-height: 25.2000007629395px; text-align: justify; background-color: rgb(236, 236, 236);">org.apache.catalina.connector.CoyoteAdapter#service</span>
public void service(org.apache.coyote.Request req, org.apache.coyote.Response res) throws Exception { Request request = (Request) req.getNote(ADAPTER_NOTES); Response response = (Response) res.getNote(ADAPTER_NOTES); //1 if (request == null) { // Create objects request = connector.createRequest(); request.setCoyoteRequest(req); response = connector.createResponse(); response.setCoyoteResponse(res); // Link objects request.setResponse(response); response.setRequest(request); // Set as notes req.setNote(ADAPTER_NOTES, request); res.setNote(ADAPTER_NOTES, response); // Set query string encoding req.getParameters().setQueryStringEncoding (connector.getURIEncoding()); } if (connector.getXpoweredBy()) { response.addHeader("X-Powered-By", POWERED_BY); } boolean comet = false; boolean async = false; try { // Parse and set Catalina and configuration specific // request parameters req.getRequestProcessor().setWorkerThreadName(Thread.currentThread().getName()); //2 boolean postParseSuccess = postParseRequest(req, request, res, response); if (postParseSuccess) { //check valves if we support async request.setAsyncSupported(connector.getService().getContainer().getPipeline().isAsyncSupported()); // Calling the container //3 connector.getService().getContainer().getPipeline().getFirst().invoke(request, response); // other code } // other code } catch (IOException e) { // Ignore } finally { req.getRequestProcessor().setWorkerThreadName(null); // Recycle the wrapper request and response if (!comet && !async) { request.recycle(); response.recycle(); } else { // Clear converters so that the minimum amount of memory // is used by this processor request.clearEncoders(); response.clearEncoders(); } } }
为了能够清楚的看到主流程,上面删除了一部分非主流程的代码。接下来我们逐一分析一下标注了数字的地方:
- 标注1的代码(第9行)将
org.apache.coyote.Request
和org.apache.coyote.Response
对象转变为org.apache.catalina.connector.Request
,org.apache.catalina.connector.Response
类型的对象。当中coyote包中的Request只不过包括了解析出来的http协议的数据,而connector包中的Request才是真正Servlet容器中的HttpServletRequest,它里面包括了完毕请求须要的host,context和wrapper信息,在这里每个wrapper事实上都相应web.xml配置的一个Servlet。 - 标注2(第44行)的代码调用了postParseRequest方法,这种方法里面做的事情许多,可是终于都是为了依据Request对象找到相应的Host,Conext和Wrapper对象,也就是说终于要清楚这个请求应该由哪个Servlet来处理。
- 标注3(第50)的代码将已经设置好了Host,Context,Wrapper对象的Request通过Pipeline机制链式传递给终于的Servlet。
上面仅仅是从总体上告诉了读者org.apache.catalina.connector.CoyoteAdapter#service
方法做的事情,接下来我们进一步分解每个步骤都详细做了哪些工作。第一步比較简单,大家能够自己阅读,我们关键来看2,3步。首先我们来看看postParseRequest方法。
通过分析org.apache.catalina.connector.CoyoteAdapter#postParseRequest的代码,我们会发现它终于是通过org.apache.tomcat.util.http.mapper.Mapper#map
方法来达到匹配请求到相应的Context和Wrapper(Servlet包装类)目的。详细代码例如以下:
<span style="color: rgb(102, 102, 102); font-family: 'Open Sans', HelveticaNeue-Light, 'Helvetica Neue Light', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 12.6000003814697px; line-height: 25.2000007629395px; text-align: justify; background-color: rgb(236, 236, 236);">org.apache.catalina.connector.CoyoteAdapter#postParseRequest</span>connector.getMapper().map(serverName, decodedURI, version, request.getMappingData()); request.setContext((Context) request.getMappingData().context); request.setWrapper((Wrapper) request.getMappingData().wrapper);那我们再来看看此方法。通过分析它的代码。我们发现终于事实上是调用了几个
internalMap**
方法将找到的Context,Wrapper设置到org.apache.catalina.connector.Request对象的org.apache.tomcat.util.http.mapper.MappingData类型的属性中,map方法运行完以后。然后接下来就从MappingData中获取已经找到的Context和Wrapper。再设置到Request的context和wrapper中。接下来我们再来分析第3步。第3步通过pipeline链式调用机制终于调用了Servlet对象。而对于pipeline事实上是运用了责任链模式,它将各个阀门链接起来,然后一步步的调用,而至于有多少个阀门(Valve)对象。主要来源于两个地方,一个是conf/server.xml中配置的valve,我们知道全部的容器都是支持pipeline机制的,另外一个就是每个容器的构造当中自己初始化的阀门对象。
接下来一一看一下。对于StandardEngine来说有一个与之相应的StandardEngineValve。对于StandardHost有一个StandardHostValve与之相应。StandardContext有一个StandardContextValve与之相应。StandardWrapper与StandardWrapperValve相应,通过分析代码。我们能够得到例如以下的一个调用链。
->org.apache.catalina.core.StandardEngineValve#invoke -->org.apache.catalina.valves.AccessLogValve#invoke --->org.apache.catalina.valves.ErrorReportValve#invoke ---->org.apache.catalina.core.StandardHostValve#invoke ----->org.apache.catalina.authenticator.AuthenticatorBase#invoke ------>org.apache.catalina.core.StandardContextValve#invoke ------->org.apache.catalina.core.StandardWrapperValve#invoke
上述的调用栈中。最后会调用到StandardWrapperValve,它事实上也是终于调用Servlet的地方,接下来我们就来看看它的代码:
public final void invoke(Request request, Response response) throws IOException, ServletException { // Initialize local variables we may need boolean unavailable = false; Throwable throwable = null; // This should be a Request attribute... long t1=System.currentTimeMillis(); requestCount++; StandardWrapper wrapper = (StandardWrapper) getContainer(); Servlet servlet = null; Context context = (Context) wrapper.getParent(); // Allocate a servlet instance to process this request try { //1 if (!unavailable) { servlet = wrapper.allocate(); } } catch (UnavailableException e) { container.getLogger().error( sm.getString("standardWrapper.allocateException", wrapper.getName()), e); long available = wrapper.getAvailable(); if ((available > 0L) && (available < Long.MAX_VALUE)) { response.setDateHeader("Retry-After", available); response.sendError(HttpServletResponse.SC_SERVICE_UNAVAILABLE, sm.getString("standardWrapper.isUnavailable", wrapper.getName())); } else if (available == Long.MAX_VALUE) { response.sendError(HttpServletResponse.SC_NOT_FOUND, sm.getString("standardWrapper.notFound", wrapper.getName())); } } // other code MessageBytes requestPathMB = request.getRequestPathMB(); DispatcherType dispatcherType = DispatcherType.REQUEST; if (request.getDispatcherType()==DispatcherType.ASYNC) dispatcherType = DispatcherType.ASYNC; request.setAttribute(Globals.DISPATCHER_TYPE_ATTR,dispatcherType); request.setAttribute(Globals.DISPATCHER_REQUEST_PATH_ATTR, requestPathMB); // Create the filter chain for this request ApplicationFilterFactory factory = ApplicationFilterFactory.getInstance(); ApplicationFilterChain filterChain = factory.createFilterChain(request, wrapper, servlet); // Reset comet flag value after creating the filter chain request.setComet(false); // Call the filter chain for this request // NOTE: This also calls the servlet's service() method // 2 try { if ((servlet != null) && (filterChain != null)) { // Swallow output if needed if (context.getSwallowOutput()) { try { SystemLogHandler.startCapture(); if (request.isAsyncDispatching()) { //TODO SERVLET3 - async ((AsyncContextImpl)request.getAsyncContext()).doInternalDispatch(); } else if (comet) { filterChain.doFilterEvent(request.getEvent()); request.setComet(true); } else { filterChain.doFilter(request.getRequest(), response.getResponse()); } } finally { String log = SystemLogHandler.stopCapture(); if (log != null && log.length() > 0) { context.getLogger().info(log); } } } else { if (request.isAsyncDispatching()) { //TODO SERVLET3 - async ((AsyncContextImpl)request.getAsyncContext()).doInternalDispatch(); } else if (comet) { request.setComet(true); filterChain.doFilterEvent(request.getEvent()); } else { filterChain.doFilter (request.getRequest(), response.getResponse()); } } } } catch(Exception e){ // other code } }
为了节省版面,上面的代码已经删除非主流程的代码。接下来我们逐一分析一下标注了数字的地方:
- 标注1(第17行)的代码实例化了Servlet对象,在实例化的过程中使用了Java双检查锁的机制来实例化Servlet。有兴趣的童鞋能够去看看org.apache.catalina.core.StandardWrapper#allocate的代码。这里须要注意的是在Servlet2.4规范之前,有一个singleThreadMode模型,这个机制类似与之前EJB的无状态会话Bean机制,每一个线程过来会通过实例池中取出一个实例来完毕响应。在Servlet规范2.4之后,单线程模型已经被废除了。详细细节能够參考这里 .
- 标注2(第55行)的代码事实上调用了大家熟悉的Servlet的过滤器链。过滤器链终于就会调用到Servlet.
最后,咋们再来看看过滤器滤链的处理。来看看org.apache.catalina.core.ApplicationFilterChain#doFilter
。doFilter方法中会依据filterConfig中取的web.xml配置的过滤器,然后一个个调用,等每一个过滤器运行完了以后,终于就会调用到Servlet的Service方法。
通过上面的分析,事实上我们已经清楚了一个请求过来以后,Tomcat是怎样一步步处理的。我们再来做一个整体的总结:
- 用户浏览器发送请求,请求会发送到相应的Connector监听的Socketport。
- Connector从Socket流中获取数据。然后依据Http协议将其解析为Request和Reponse对象
- 找到Request对象相应的Host,Context,Wrapper
- 调用终于的Servelt的service进行处理。