5. Set<E>接口与实现
Set<E>接口表示一个数学的集合,它不同意元素的反复,仅仅能包括一个null元素。
Set<E>接口声明了以下抽象方法。
boolean add(E o) // add the specified element if it is not already present boolean remove(Object o) // remove the specified element if it is present boolean contains(Object o) // return true if it contains o // Set operations boolean addAll(Collection<? extends E> c) // Set union boolean retainAll(Collection<?> c) // Set intersection
Set<E>接口的实现类包含:
- HashSet<E>:在一个哈希表中存储元素(哈希值通过hashcode()产生),HashSet是Set的全面实现。
- LinkedHashSet<E>:存储元素在一个哈希链表中,因此它有更高的插入删除效率。
- TreeSet<E>: 它也实现了子接口NavigableSet 和 SortedSet,存储元素在一个红黑树的数据结构中,它的搜索、加入、删除效率非常高,时间复杂度为O(log(n)
5.1 HashSet<E>的样例
以下写了一个Book类而且写了一个Book的集合。
public class Book { private int id; private String title; // Constructor public Book(int id, String title) { this.id = id; this.title = title; } @Override public String toString() { return id + ": " + title; } // Two book are equal if they have the same id @Override public boolean equals(Object o) { if (!(o instanceof Book)) { return false; } return this.id == ((Book)o).id; } // Consistent with equals(). Two objects which are equal have the same hash code. @Override public int hashCode() { return id; } }
我们须要提供equals()方法。这样实现Set的集合能够验证元素的相等性和反复性,比如,我们选用id来区分不同的对象元素。这样我们实现的equals()方法就是假设两个对象的id同样。那么就返回true。另外。我们也须要又一次hashCode()方法来保持它也equals()的一致性。
关于equals()和hashCode()的关联能够參考文章:Effective Java——对全部对象通用的方法
import java.util.HashSet; import java.util.Set; public class TestHashSet { public static void main(String[] args) { Book book1 = new Book(1, "Java for Dummies"); Book book1Dup = new Book(1, "Java for the Dummies"); // same id as above Book book2 = new Book(2, "Java for more Dummies"); Book book3 = new Book(3, "more Java for more Dummies"); Set<Book> set1 = new HashSet<Book>(); set1.add(book1); set1.add(book1Dup); // duplicate id, not added set1.add(book1); // added twice, not added set1.add(book3); set1.add(null); // Set can contain a null set1.add(null); // but no duplicate set1.add(book2); System.out.println(set1); // [null, 1: Java for Dummies, // 2: Java for more Dummies, 3: more Java for more Dummies] set1.remove(book1); set1.remove(book3); System.out.println(set1); // [null, 2: Java for more Dummies] Set<Book> set2 = new HashSet<Book>(); set2.add(book3); System.out.println(set2); // [3: more Java for more Dummies] set2.addAll(set1); // "union" with set1 System.out.println(set2); // [null, 2: Java for more Dummies, 3: more Java for more Dummies] set2.remove(null); System.out.println(set2); // [2: Java for more Dummies, 3: more Java for more Dummies] set2.retainAll(set1); // "intersection" with set1 System.out.println(set2); // [2: Java for more Dummies] } }一个Set不能存放反复的元素,检查元素的反复性就是通过重写的equal()方法来检查的。
另外一个Set中仅仅能存放一个null元素。
addAll()是否是将两个Set联合,retainAll()是取两个Set的交集。
须要注意的是Set中元素的排序是随意的,并非插入的顺序。
5.2 LinkedHashSet<E>的样例
不像HashSet。LinkedHashSet<E>构建的是一个基于哈希表的链表,主要是为了更好的插入和删除效率。另外,它里面元素的顺序维持的就是插入的顺序(比如:add()方法)。
import java.util.LinkedHashSet; import java.util.Set; public class TestLinkedHashSet { public static void main(String[] args) { Book book1 = new Book(1, "Java for Dummies"); Book book1Dup = new Book(1, "Java for the Dummies"); // same id as above Book book2 = new Book(2, "Java for more Dummies"); Book book3 = new Book(3, "more Java for more Dummies"); Set<Book> set = new LinkedHashSet<Book>(); set.add(book1); set.add(book1Dup); // duplicate id, not added set.add(book1); // added twice, not added set.add(book3); set.add(null); // Set can contain a null set.add(null); // but no duplicate set.add(book2); System.out.println(set); // [1: Java for Dummies, 3: more Java for more Dummies, // null, 2: Java for more Dummies] } }
能够看到,Set的输出的顺序跟add()加入的顺序是一致的。
5.3 NavigableSet<E> & SortedSet<E>接口
SortedSet<E>在元素add()的过程中会进行排序。排序策略使用的是Comparable的实现或者提供的Comparator对象。
NavigableSet<E>是Set的子接口,它提供了一些额外的方法。
Iterator<E> descendingIterator() // Returns an iterator over the elements in this set, // in descending order. Iterator<E> iterator() // Returns an iterator over the elements in this set, in ascending order. // Per-element operation E floor(E e) // Returns the greatest element in this set less than or equal to the given element, // or null if there is no such element. E ceiling(E e) // Returns the least element in this set greater than or equal to the given element, // or null if there is no such element. E lower(E e) // Returns the greatest element in this set strictly less than the given element, // or null if there is no such element. E higher(E e) // Returns the least element in this set strictly greater than the given element, // or null if there is no such element. // Subset operation SortedSet<E> headSet(E toElement) // Returns a view of the portion of this set // whose elements are strictly less than toElement. SortedSet<E> tailSet(E fromElement) // Returns a view of the portion of this set // whose elements are greater than or equal to fromElement. SortedSet<E> subSet(E fromElement, E toElement) // Returns a view of the portion of this set // whose elements range from fromElement, inclusive, to toElement, exclusive.5.4 TreeSet<E>样例
TreeSet<E>是NavigableSet<E>
和 SortedSet<E>的实现
.样例——实现Comparable的TreeSet
public class AddressBookEntry implements Comparable<AddressBookEntry> { private String name, address, phone; public AddressBookEntry(String name) { this.name = name; } @Override public String toString() { return name; } @Override public int compareTo(AddressBookEntry another) { return this.name.compareToIgnoreCase(another.name); } @Override public boolean equals(Object o) { if (!(o instanceof AddressBookEntry)) { return false; } return this.name.equalsIgnoreCase(((AddressBookEntry)o).name); } @Override public int hashCode() { return name.length(); } }AddressBookEntry实现了Comparable接口,为了在TreeSet中进行使用,它重写了
compareTo()
方法去比較name。它同一时候也又一次了equals()和hashCode()方法,主要为了保持跟compareTo()
的一致性。import java.util.TreeSet; public class TestTreeSetComparable { public static void main(String[] args) { AddressBookEntry addr1 = new AddressBookEntry("peter"); AddressBookEntry addr2 = new AddressBookEntry("PAUL"); AddressBookEntry addr3 = new AddressBookEntry("Patrick"); TreeSet<AddressBookEntry> set = new TreeSet<AddressBookEntry>(); set.add(addr1); set.add(addr2); set.add(addr3); System.out.println(set); // [Patrick, PAUL, peter] System.out.println(set.floor(addr2)); // PAUL System.out.println(set.lower(addr2)); // Patrick System.out.println(set.headSet(addr2)); // [Patrick] System.out.println(set.tailSet(addr2)); // [PAUL, peter] } }能够看到AddressBookEntry对象在add()操作过程中进行了排序,使用的就是Comparable实现的方法。
样例——实现Comparator的TreeSet
上面的PhoneBookEntry并没有实现Comparator,我们这里是单独定义一个Comparator实例,使用这个实例来创建TreeSet。
以下我们来又一次上面的样例,这次使用的是Comparator对象来实现对象的比較。
public class PhoneBookEntry { public String name, address, phone; public PhoneBookEntry(String name) { this.name = name; } @Override public String toString() { return name; } }
上面的PhoneBookEntry并没有实现Comparator,我们这里是单独定义一个Comparator实例,使用这个实例来创建TreeSet。
import java.util.Set; import java.util.TreeSet; import java.util.Comparator; public class TestTreeSetComparator { public static class PhoneBookComparator implements Comparator<PhoneBookEntry> { @Override public int compare(PhoneBookEntry p1, PhoneBookEntry p2) { return p2.name.compareToIgnoreCase(p1.name); // descending name } } public static void main(String[] args) { PhoneBookEntry addr1 = new PhoneBookEntry("peter"); PhoneBookEntry addr2 = new PhoneBookEntry("PAUL"); PhoneBookEntry addr3 = new PhoneBookEntry("Patrick"); Comparator<PhoneBookEntry> comp = new PhoneBookComparator(); TreeSet<PhoneBookEntry> set = new TreeSet<PhoneBookEntry>(comp); set.add(addr1); set.add(addr2); set.add(addr3); System.out.println(set); // [peter, PAUL, Patrick] Set<PhoneBookEntry> newSet = set.descendingSet(); // Reverse the order System.out.println(newSet); // [Patrick, PAUL, peter] } }上面我们创建了一个带有BookComparator实例的TreeSet。这样上面Set中对象的比較使用的就是BookComparator的compare方法,在上面样例中。调用TreeSet的descendingSet()方法来是集合倒序。
6. Queue<E>接口与实现
Queue中的元素是以一种特定的顺序进行加入和删除。比如典型的先入先出。deque是一个双向队列。它的元素的加入和删除能够在两端进行。
在Collection<E>操作之外,
Queue<E>
也额外加入了插入、获取、查看的操作方法,每一个方法都提供了两种形式:一个是假设操作失败会抛出异常,另外一个假设操作是否会返回一个值(false或者null,据详细操作而定)。// Insertion at the end of the queue boolean add(E e) // throws IllegalStateException if no space is currently available boolean offer(E e) // returns true if the element was added to this queue, else false // Extract element at the head of the queue E remove() // throws NoSuchElementException if this queue is empty E poll() // returns the head of this queue, or null if this queue is empty // Inspection (retrieve the element at the head, but does not remove) E element() // throws NoSuchElementException if this queue is empty E peek() // returns the head of this queue, or null if this queue is empty
Deque<E>也提供了额外的方法来操作队列的两端
// Insertion void addFirst(E e) void addLast(E e) boolean offerFirst(E e) boolean offerLast(E e) // Retrieve and Remove E removeFirst() E removeLast() E pollFirst() E pollLast() // Retrieve but does not remove E getFirst() E getLast() E peekFirst() E peekLast()一个Deque能够看做是一个FIFO对象(通过
add(e)
, remove()
, element()
, offer(e)
, poll()
, peek()方法
)。也能够看做是一个LIFO队列(通过push(e)
, pop()
, peek()方法
)。Queue<E>
和 Deque<E>的实现类例如以下:
PriorityQueue<E>
: 这个队列能够使用一个指定的顺序去进行排序,而不是FIFO的顺序。
ArrayDeque<E>
: 使用queue或者deque来实现的动态数组,类似于ArrayList<E>。
LinkedList<E>
: 它在实现List<E>接口的基础上,也实现了Queue<E>
和Deque<E>接口,它是双向链表结构。
7. Map<K,V>接口与实现
Map集合相应的是一个键值对。每一个key相应一个value,键值不同意反复,value是同意反复的。它跟线性数组有些同样,不同的是它使用key来进行索引訪问相应的value,所以map使用使用随意的key。
Map<K,V>接口声明了以下抽象方法。
V get(Object key) // Returns the value of the specified key V put(K key, V value) // Associate the specified value with the specified key boolean containsKey(Object key) // Is this map has specified key? boolean containsValue(Object value) // Views Set<K> keySet() // Returns a set view of the keys Collection<V> values() // Returns a collection view of the values Set entrySet() // Returns a set view of the key-value
Map<K,V>接口的实现类包含:
HashMap<K,V>
:HashMap实现了Map<K,V>。而且是Map全面的实现,可是HashMap的方法不是同步的,也就是线程不安全。
TreeMap<K,V>
:实现了SortedMap<K,V>接口的红黑树。
LinkedHashMap<K,V>
:带有链表的哈希表,方便插入和删除
Hashtable<K,V>
:它是对Map<K,V>方法的同步实现。也就是它是线程安全的。另外它不同意key和value为null。
样例:
HashMap<String, String> aMap = new HashMap<String, String>(); aMap.put("1", "Monday"); aMap.put("2", "Tuesday"); aMap.put("3", "Wednesday"); String str1 = aMap.get("1"); // No need downcast System.out.println(str1); String str2 = aMap.get("2"); System.out.println(str2); String str3 = aMap.get("3"); System.out.println(str3); Set<String> keys = aMap.keySet(); for (String str : keys) { System.out.print(str); System.out.print(":"); System.out.println(aMap.get(str)); }
// Counts the frequency of each of the words in a file given in the command-line, // and saves in a map of {word, freq}. import java.util.Map; import java.util.HashMap; import java.util.Scanner; import java.io.File; public class WordCount { public static void main(String[] args) throws Exception { Scanner in = new Scanner(new File(args[0])); Map<String, Integer> map = new HashMap<String, Integer>(); while (in.hasNext()) { String word = in.next(); int freq = (map.get(word) == null) ? 1 : map.get(word) + 1; // type-safe map.put(word, freq); // autobox int to Integer and upcast, type-check } System.out.println(map); } }
8. 算法
Collection框架提供了两个工具类:
java.util.Arrays
和 java.util.Collections,它们提供了一些主要的算法。比如插入和查找等等。
另外须要注意的是Collections是工具类,Collection是集合框架的接口。
8.1
java.util.Arrays工具类
java.util.Arrays包括了非常多的静态方法来对数组进行排序或者查找等等操作。
Array是Java中的引用类型,它能够包括基本数据类型,也能够包括对象数据类型。Java中的数组能够包括9种数据类型,
byte
, short
, int
, long
, float
, double
, char
, boolean和对象类型。
对除boolean类型之外的基本数据类型以及对象类型的数据进行排序。比如int[]数组:
// Sort the given array into ascending order public static void sort(int[] a) // Sort between fromIndex (inclusive) and toTodex (exclusive) public static void sort(int[] a, int fromIndex, int toIndex)同理。sort()可用于
byte[]
, short[]
, long[]
, float[]
, double[]
, char[]
(除 boolean[]外
)
and Object[]
中。相应Object[],对象必须实现Comparable接口的compareTo()方法。
public static void sort(Object[] a) public static void sort(Object[] a, int fromIndex, int toIndex)对于泛型对象的排序。通过提供Comparator对象来实现排序。
public static <T> void sort(T[] a, Comparator<? super T> c) public static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<?如果你想对一个Integer数组进行排序,也就是T为Integer,你能够实现一个Comparator<Integer>或者Comparator<Number>或者Comparator<Object>实例来提供给sort方法,super T> c)
Object
and Number都是Integer的超类。
Searching - Arrays.binarySearch()
同理。也有对于全部基本数据类型或者对象类型查找的方法。在运行
binarySearch()
运行对数组须要进行排序。public static int binarySearch(int[] a, int key) public static int binarySearch(int[] a, int fromIndex, int toIndex, int key) // Similar methods for byte[], short[], long[], float[], double[] and char[] // Searching objects, which implements Comparable public static int binarySearch(Object[] a, Object key) public static int binarySearch(Object[] a, int fromIndex, int toIndex, Object key) // Searching generic objects, based on the given Comparator public static <T> int binarySearch(T[] a, T key, Comparator<?super T> c) public static <T> int binarySearch(T[] a, T key, int fromIndex, int toIndex, Comparator<? super T> c)
Equality Comparison - Arrays.equals()
public static boolean equals(int[] a1, int[] a2) // Similar methods for byte[], short[], long[], float[], double[], char[], boolean[] and Object[]
Copying - Arrays.copyOf() 和 Arrays.copyOfRange()
public static int[] copyOf(int[] original, int newLength) // Copies the given array, truncating or padding with zeros (if necessary) so the copy has the specified length public static int[] copyOfRange(int[] original, int from, int to) // padded with 0 if to is beyond the length // Similar methods for byte[], short[], long[], float[], double[], char[] and boolean[] public static <T> T[] copyOf(T[] original, int newLength) public static <T> T[] copyOfRange(T[] original, int from, int to) public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) public static <T,U> T[] copyOfRange(U[] original, int from, int to, Class<?extends T[]> newType)
Filling - Arrays.fill()
public static void fill(int[] a, int value) public static void fill(int[] a, int fromIndex, int toIndex, int value) // Similar methods for byte[], short[], long[], float[], double[], char[] and boolean[] and Object[]
Description - Arrays.toString()
// Returns a string representation of the contents of the specified array. public static String toString(int[] a) // Similar methods for byte[], short[], long[], float[], double[], char[] and boolean[] and Object[]
转换为List - Arrays.asList()
// Returns a fixed-size list backed by the specified array. // Change to the list write-thru to the array. public static <T> List<T> asList(T[] a)
跟java.util.Arrays一样。java.util.Collections也提供了静态的方法来对集合进行操作。、
Sorting
- Collections.sort()
// Sorts the specified list into ascending order. The objects shall implement Comparable. public static <T extends Comparable<? super T>> void sort(List<T> list) // Sorts the specified list according to the order induced by the specified comparator. public static <T> void sort(List<T> list, Comparator<? super T> c)须要注意的是Collections.sort()仅仅能用在List上面。不能使用在
Set
, Queue
和 Map上,SortedSet
(TreeSet
)
和 SortedMap
(TreeMap)能够自己主动排序。
Searching - Collections.binarySearch()
在使用binarySearch()之前,List必须进行排序。
public static <T> int binarySearch(List<? extends Comparable<? super T>> list, T key) public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c)
最大和最小 - Collections.max() & Collections.min()
// Returns the maximum/minimum element of the given collection, according to the natural ordering of its elements. public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> c) public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> c) // Returns the maximum/minimum element of the given collection, according to the order induced by the specified comparator. public static <T> T max(Collection<? extends T> c, Comparator<? super T> comp) public static <T> T min(Collection<?extends T> c, Comparator<? super T> comp)
Synchronized Collection, List, Set & Map
非常多的Collection的实现类都不是同步的,比如ArrayList
, HashSet
和 HashMap
,也就是它们不是线程安全的,除了Vector
和 HashTable是同步的,假设我们不想使用Vector
和 HashTable,我们能够通过静态的 Collections.synchronizedXxx()
创建同步的Collection
,
List
。
Set
。
SortedSet
,
Map
和 SortedMap。
// Returns a synchronized (thread-safe) collection backed by the specified collection. public static <T> Collection<T> synchronizedCollection(Collection<T> c) // Others public static <T> List<T> synchronizedList(List<T> list) public static <T> Set<T> synchronizedSet(Set<T> set) public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> set) public static <K,V> Map<K,V> synchronizedMap(Map<K,V> map) public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> map)对于上面方法返回的对象,在遍历的时候。必须包括在synchronize块中。
List lst = Collections.synchronizedList(new ArrayList()); ...... synchronized(lst) { // must be enclosed in a synchronized block Iterator iter = lst.iterator(); while (iter.hasNext()) iter.next(); ...... }
原文链接:Java Programming Tutorial The Collection Framework