zoukankan      html  css  js  c++  java
  • 软件工程专业必须要会的算法

    KMP算法

    内容

      计算《部分匹配表》,移动位数 = 已匹配的字符数 - 对应的部分匹配值。

    摘自

      点击查看原博主

    #include<iostream>
    #include<algorithm>
    #include<string>
    
    using namespace std;
    
    void ComputePrefix(string s,int next[]){
        int n = s.length();
        int q,k;
        next[0] = 0;
        for(k=0,q=1;q<n;q++){
            while(k>0 && s[k]!=s[q])
                k = next[k];
            if(s[k]==s[q])
                k++;
            next[q] = k;
        }
    }
    void KMPMatcher(string text,string pattern) {
        int n = text.length();
        int m = pattern.length();
        int next[pattern.length()];
        ComputePrefix(pattern, next);
    
        for(int i=0,q=0;i<n;i++) {
            while(q>0 && pattern[q]!=text[i])
                q = next[q];
            if(pattern[q]==text[i])
                q++;
            if(q==m)
            {
                cout<<"Pattern occurs with shift "<<i-m+1<<endl;
                q=0;
            }
        }
    }
    
    int main()
    {
        string s = "abcdabcdebcd";
        string p  ="bcd";
        KMPMatcher(s, p);
        cout<<endl;
        return 0;
    }
    

    Tries | 字典树

    内容

      字典树(Trie)是一种很特别的树状信息检索数据结构,如同其名,它的构成就像一本字典,可以让你快速的进行字符插入、字符串搜索等。Trie 一词来自 retrieval,发音为 /tri:/ "tree",也有人读为 /traɪ/ "try"。字典树设计的核心思想是空间换时间,所以数据结构本身比较消耗空间。但它利用了字符串的共同前缀(Common Prefix)作为存储依据,以此来节省存储空间,并加速搜索时间。Trie 的字符串搜索时间复杂度为 O(m),m 为最长的字符串的长度,其查询性能与集合中的字符串的数量无关。其在搜索字符串时表现出的高效,使得特别适用于构建文本搜索和词频统计等应用。

    摘自

      点击查看原博主

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    #define ARRAY_SIZE(a) sizeof(a)/sizeof(a[0])
    
    // Alphabet size (# of symbols)
    #define ALPHABET_SIZE (26)
    
    // Converts key current character into index
    // use only 'a' through 'z' and lower case
    #define CHAR_TO_INDEX(c) ((int)c - (int)'a')
    
    // trie node
    typedef struct trie_node trie_node_t;
    struct trie_node
    {
        int value;
        trie_node_t *children[ALPHABET_SIZE];
    };
    
    // trie ADT
    typedef struct trie trie_t;
    struct trie
    {
        trie_node_t *root;
        int count;
    };
    
    // Returns new trie node (initialized to NULLs)
    trie_node_t *getNode(void)
    {
        trie_node_t *pNode = NULL;
    
        pNode = (trie_node_t *)malloc(sizeof(trie_node_t));
    
        if (pNode)
        {
            int i;
    
            pNode->value = 0;
    
            for (i = 0; i < ALPHABET_SIZE; i++)
            {
                pNode->children[i] = NULL;
            }
        }
    
        return pNode;
    }
    
    // Initializes trie (root is dummy node)
    void initialize(trie_t *pTrie)
    {
        pTrie->root = getNode();
        pTrie->count = 0;
    }
    
    // If not present, inserts key into trie
    // If the key is prefix of trie node, just marks leaf node
    void insert(trie_t *pTrie, char key[])
    {
        int level;
        int length = strlen(key);
        int index;
        trie_node_t *pCrawl;
    
        pTrie->count++;
        pCrawl = pTrie->root;
    
        for (level = 0; level < length; level++)
        {
            index = CHAR_TO_INDEX(key[level]);
            if (!pCrawl->children[index])
            {
                pCrawl->children[index] = getNode();
            }
    
            pCrawl = pCrawl->children[index];
        }
    
        // mark last node as leaf
        pCrawl->value = pTrie->count;
    }
    
    // Returns non zero, if key presents in trie
    int search(trie_t *pTrie, char key[])
    {
        int level;
        int length = strlen(key);
        int index;
        trie_node_t *pCrawl;
    
        pCrawl = pTrie->root;
    
        for (level = 0; level < length; level++)
        {
            index = CHAR_TO_INDEX(key[level]);
    
            if (!pCrawl->children[index])
            {
                return 0;
            }
    
            pCrawl = pCrawl->children[index];
        }
    
        return (0 != pCrawl && pCrawl->value);
    }
    
    // Driver
    int main()
    {
        // Input keys (use only 'a' through 'z' and lower case)
        char keys[][8] = { "the", "a", "there", "answer", "any", "by", "bye", "their" };
        
        char output[][32] = { "Not present in trie", "Present in trie" };
    
        trie_t trie;
        initialize(&trie);
    
        // Construct trie
        for (int i = 0; i < ARRAY_SIZE(keys); i++)
        {
            insert(&trie, keys[i]);
        }
    
        // Search for different keys
        printf("%s --- %s
    ", "the", output[search(&trie, "the")]);
        printf("%s --- %s
    ", "these", output[search(&trie, "these")]);
        printf("%s --- %s
    ", "their", output[search(&trie, "their")]);
        printf("%s --- %s
    ", "thaw", output[search(&trie, "thaw")]);
    
        return 0;
    }
    

    贪婪算法

    内容

      贪心算法(英語:greedy algorithm),又称贪婪算法,是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。

    摘自

      点击查看原博

  • 相关阅读:
    全基因组关联分析学习资料(GWAS tutorial)
    GWAS研究可利用的数据库(20200424更新)
    本周最新文献速递20200614
    本周最新文献速递20200607
    甲基化数据QC: 使用甲基化数据推测SNP基因型(ewastools工具)
    文献速递20200531
    查找感兴趣的基因、基因组区域是否有调控元件的在线网页工具EpiRegio
    许嵩
    甲基化数据QC:使用甲基化数据计算样本间的相关性
    there is no package called 'GO.db'报错解决方案
  • 原文地址:https://www.cnblogs.com/yjchen/p/12259492.html
Copyright © 2011-2022 走看看