zoukankan      html  css  js  c++  java
  • 实验四 决策树算法及应用

    个人班级 机器学习实验-计算机182
    实验题目 决策树算法及应用
    姓名 于俊杰
    学号 3180701201
    一、实验目的
    1.理解决策树算法原理,掌握决策树算法框架;
    2.理解决策树学习算法的特征选择、树的生成和树的剪枝;
    3.能根据不同的数据类型,选择不同的决策树算法;
    4.针对特定应用场景及数据,能应用决策树算法解决实际问题。

    二、实验内容
    1.设计算法实现熵、经验条件熵、信息增益等方法。
    2.实现ID3算法。
    3.熟悉sklearn库中的决策树算法;
    4.针对iris数据集,应用sklearn的决策树算法进行类别预测。
    5.针对iris数据集,利用自编决策树算法进行类别预测。

    三、实验报告要求
    1.对照实验内容,撰写实验过程、算法及测试结果;
    2.代码规范化:命名规则、注释;
    3.分析核心算法的复杂度;
    4.查阅文献,讨论ID3、5算法的应用场景;
    5.查询文献,分析决策树剪枝策略。

    四、实验过程及结果
    决策树
    In [1]:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math
    from math import log
    import pprint
    习题5.1
    In [2]:
    def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
    ['青年', '否', '否', '好', '否'],
    ['青年', '是', '否', '好', '是'],
    ['青年', '是', '是', '一般', '是'],
    ['青年', '否', '否', '一般', '否'],
    ['中年', '否', '否', '一般', '否'],
    ['中年', '否', '否', '好', '否'],
    ['中年', '是', '是', '好', '是'],
    ['中年', '否', '是', '非常好', '是'],
    ['中年', '否', '是', '非常好', '是'],
    ['老年', '否', '是', '非常好', '是'],
    ['老年', '否', '是', '好', '是'],
    ['老年', '是', '否', '好', '是'],
    ['老年', '是', '否', '非常好', '是'],
    ['老年', '否', '否', '一般', '否'],
    ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    # 返回数据集和每个维度的名称
    return datasets, labels
    In [3]:
    datasets, labels = create_data()
    In [4]:
    train_data = pd.DataFrame(datasets, columns=labels)
    In [5]:
    train_data
    运行结果:

    In [6]:
    //熵
    def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
    label = datasets[i][-1]
    if label not in label_count:
    label_count[label] = 0
    label_count[label] += 1
    ent = -sum([(p / data_length) * log(p / data_length, 2)
    for p in label_count.values()])
    return ent
    def entropy(y):
    Entropy of a label sequence
    hist = np.bincount(y)
    ps = hist / np.sum(hist)
    return -np.sum([p * np.log2(p) for p in ps if p > 0])
    // 经验条件熵
    def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
    feature = datasets[i][axis]
    if feature not in feature_sets:
    feature_sets[feature] = []
    feature_sets[feature].append(datasets[i])
    cond_ent = sum(
    [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
    return cond_ent
    // 信息增益
    def info_gain(ent, cond_ent):
    return ent - cond_ent
    def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    ent = entropy(datasets)
    best_feature = []
    for c in range(count):
    c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
    best_feature.append((c, c_info_gain))
    print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    // 比较大小
    best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
    In [7]:

    info_gain_train(np.array(datasets))
    运行结果:

    In [8]:
    //定义节点类 二叉树
    class Node:
    def init(self, root=True, label=None, feature_name=None, feature=None):
    self.root = root
    self.label = label
    self.feature_name = feature_name
    self.feature = feature
    self.tree = {}
    self.result = {
    'label:': self.label,
    'feature': self.feature,
    'tree': self.tree
    }
    def repr(self):
    return '{}'.format(self.result)
    def add_node(self, val, node):
    self.tree[val] = node
    def predict(self, features):
    if self.root is True:
    return self.label
    return self.tree[features[self.feature]].predict(features)
    class DTree:
    def init(self, epsilon=0.1):
    self.epsilon = epsilon
    self.tree = {}
    //熵
    @staticmethod
    def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
    label = datasets[i][-1]
    if label not in label_count:
    label_count[label] = 0
    label_count[label] += 1
    ent = -sum([(p / data_length) * log(p / data_length, 2)
    for p in label_count.values()])
    return ent
    //经验条件熵
    def cond_ent(self, datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
    feature = datasets[i][axis]
    if feature not in feature_sets:
    feature_sets[feature] = []
    feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
    for p in feature_sets.values()])
    return cond_ent
    //信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
    return ent - cond_ent
    def info_gain_train(self, datasets):
    count = len(datasets[0]) - 1
    ent = self.calc_ent(datasets)
    best_feature = []
    for c in range(count):
    c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
    best_feature.append((c, c_info_gain))
    // 比较大小
    best
    = max(best_feature, key=lambda x: x[-1])
    return best_
    def train(self, train_data):
    """
    input:数据集D(DataFrame格式),特征集A,阈值eta
    output:决策树T
    """
    _, y_train, features = train_data.iloc[:, :
    -1], train_data.iloc[:,
    -1], train_data.columns[:
    -1]
    # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
    if len(y_train.value_counts()) == 1:
    return Node(root=True, label=y_train.iloc[0])
    # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
    if len(features) == 0:
    return Node(
    root=True,
    label=y_train.value_counts().sort_values(
    ascending=False).index[0])
    # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
    max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
    max_feature_name = features[max_feature]
    # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返
    if max_info_gain < self.epsilon:
    return Node(
    root=True,
    label=y_train.value_counts().sort_values(
    ascending=False).index[0])
    # 5,构建Ag子集
    node_tree = Node(
    root=False, feature_name=max_feature_name, feature=max_feature)
    feature_list = train_data[max_feature_name].value_counts().index
    for f in feature_list:
    sub_train_df = train_data.loc[train_data[max_feature_name] ==
    f].drop([max_feature_name], axis=1)
    # 6, 递归生成树
    sub_tree = self.train(sub_train_df)
    node_tree.add_node(f, sub_tree)
    # pprint.pprint(node_tree.tree)
    return node_tree
    def fit(self, train_data):
    self._tree = self.train(train_data)
    return self._tree
    def predict(self, X_test):
    return self._tree.predict(X_test)
    In [9]:
    datasets, labels = create_data()
    data_df = pd.DataFrame(datasets, columns=labels)
    dt = DTree()
    tree = dt.fit(data_df)
    In [10]:
    tree
    运行结果:

    In [11]:
    dt.predict(['老年', '否', '否', '一般'])
    运行结果:

    scikit-learn实例
    In [12]:
    data
    def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = [
    'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
    ]
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:, :2], data[:, -1]
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    In [13]:
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.tree import export_graphviz
    import graphviz
    In [14]:
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train,)
    运行结果:

    In [15]:
    clf.score(X_test, y_test)
    运行结果:

    In [16]:
    tree_pic = export_graphviz(clf, out_file="mytree.pdf")
    with open('mytree.pdf') as f:
    dot_graph = f.read()
    In [17]:
    graphviz.Source(dot_graph)
    运行结果:

    决策树-习题
    In [18]:
    from sklearn.tree import DecisionTreeClassifier
    from sklearn import preprocessing
    import numpy as np
    import pandas as pd
    from sklearn import tree
    import graphviz
    features = ["年龄", "有工作", "有自己的房子", "信贷情况"]
    X_train = pd.DataFrame([
    ["青年", "否", "否", "一般"],
    ["青年", "否", "否", "好"],
    ["青年", "是", "否", "好"],
    ["青年", "是", "是", "一般"],
    ["青年", "否", "否", "一般"],
    ["中年", "否", "否", "一般"],
    ["中年", "否", "否", "好"],
    ["中年", "是", "是", "好"],
    ["中年", "否", "是", "非常好"],
    ["中年", "否", "是", "非常好"],
    ["老年", "否", "是", "非常好"],
    ["老年", "否", "是", "好"],
    ["老年", "是", "否", "好"],
    ["老年", "是", "否", "非常好"],
    ["老年", "否", "否", "一般"]
    ])
    y_train = pd.DataFrame(["否", "否", "是", "是", "否",
    "否", "否", "是", "是", "是",
    "是", "是", "是", "是", "否"])
    //数据预处理
    le_x = preprocessing.LabelEncoder()
    le_x.fit(np.unique(X_train))
    X_train = X_train.apply(le_x.transform)
    le_y = preprocessing.LabelEncoder()
    le_y.fit(np.unique(y_train))
    y_train = y_train.apply(le_y.transform)
    // 调用sklearn.DT建立训练模型
    model_tree = DecisionTreeClassifier()
    model_tree.fit(X_train, y_train)
    //可视化
    dot_data = tree.export_graphviz(model_tree, out_file=None,
    feature_names=features,
    class_names=[str(k) for k in np.unique(y_train)],
    filled=True, rounded=True,
    special_characters=True)
    graph = graphviz.Source(dot_data)
    graph
    运行结果:

    习题5.2
    In [19]:
    import numpy as np
    class LeastSqRTree:
    def init(self, train_X, y, epsilon):
    # 训练集特征值
    self.x = train_X
    # 类别
    self.y = y
    # 特征总数
    self.feature_count = train_X.shape[1]
    # 损失阈值
    self.epsilon = epsilon
    # 回归树
    self.tree = None
    def _fit(self, x, y, feature_count, epsilon):
    # 选择最优切分点变量j与切分点s
    (j, s, minval, c1, c2) = self._divide(x, y, feature_count)
    # 初始化树
    tree = {"feature": j, "value": x[s, j], "left": None, "right": None}
    if minval < self.epsilon or len(y[np.where(x[:, j] <= x[s, j])]) <= 1:
    tree["left"] = c1
    else:
    tree["left"] = self._fit(x[np.where(x[:, j] <= x[s, j])],
    y[np.where(x[:, j] <= x[s, j])],
    self.feature_count, self.epsilon)
    if minval < self.epsilon or len(y[np.where(x[:, j] > s)]) <= 1:
    tree["right"] = c2
    else:
    tree["right"] = self._fit(x[np.where(x[:, j] > x[s, j])],
    y[np.where(x[:, j] > x[s, j])],
    self.feature_count, self.epsilon)
    return tree
    def fit(self):
    self.tree = self._fit(self.x, self.y, self.feature_count, self.epsilon)
    @staticmethod
    def _divide(x, y, feature_count):
    # 初始化损失误差
    cost = np.zeros((feature_count, len(x)))
    # 公式5.21
    for i in range(feature_count):
    for k in range(len(x)):
    # k行i列的特征值
    value = x[k, i]
    y1 = y[np.where(x[:, i] <= value)]
    c1 = np.mean(y1)
    y2 = y[np.where(x[:, i] > value)]
    c2 = np.mean(y2)
    y1[:] = y1[:] - c1
    y2[:] = y2[:] - c2
    cost[i, k] = np.sum(y1 * y1) + np.sum(y2 * y2)
    # 选取最优损失误差点
    cost_index = np.where(cost == np.min(cost))
    # 选取第几个特征值
    j = cost_index[0][0]
    # 选取特征值的切分点
    s = cost_index[1][0]
    # 求两个区域的均值c1,c2
    c1 = np.mean(y[np.where(x[:, j] <= x[s, j])])
    c2 = np.mean(y[np.where(x[:, j] > x[s, j])])
    return j, s, cost[cost_index], c1, c2
    In [20]:
    train_X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).T
    y = np.array([4.50, 4.75, 4.91, 5.34, 5.80, 7.05, 7.90, 8.23, 8.70, 9.00])
    model_tree = LeastSqRTree(train_X, y, .2)
    model_tree.fit()
    model_tree.tree
    运行结果:

    五、实验小结
    通过这次试验,我理解了决策树的算法原理,决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
    决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。

  • 相关阅读:
    Git撤销commit消息保留修改
    switchysharp设置
    Windows10下的docker安装与入门 (三) 创建自己的docker镜像并且在容器中运行它
    Windows10下的docker安装与入门 (二)使用docker引擎在容器中运行镜像
    Windows10下的docker安装与入门 (一)使用docker toolbox安装docker
    semver(Semantic Versioning)
    conda install mingw libpython
    下载 安装MYsql 服务器
    .NET(c#) 移动APP开发平台
    .NET(c#) 移动APP开发平台
  • 原文地址:https://www.cnblogs.com/yjjtt/p/14930954.html
Copyright © 2011-2022 走看看