金明的预算方案
显然是个背包问题
把每个主件和它对应的附件放在一组,枚举每一组,有以下几种选法:
1.都不选
2.只选主件
3.一个主件+一个附件
4.一个主件+两个附件
于是就成了01背包。。
1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 using namespace std; 5 int n,m,f[32010],v[65][4],w[65][4],pos[65]; //pos[i]记录编号为i的物品在数组v,w中的下标
//w[i][0]表示第i个主件的附件个数
6 int main() 7 { 8 scanf("%d%d",&n,&m); 9 int V,P,Q,sum; 10 for(int i=1;i<=m;i++) 11 { 12 scanf("%d%d%d",&V,&P,&Q); 13 if(Q==0) 14 { 15 v[++sum][1]=V; 16 w[sum][1]=P; 17 pos[i]=sum; 18 } 19 else 20 { 21 w[pos[Q]][++w[pos[Q]][0]+1]=P; 22 v[pos[Q]][w[pos[Q]][0]+1]=V; 23 } 24 } 25 for(int i=1;i<=sum;i++) 26 for(int j=n;j>=v[i][1];j--) 27 { 28 f[j]=max(f[j],f[j-v[i][1]]+w[i][1]*v[i][1]); 29 if(w[i][0]>=1&&j-v[i][1]-v[i][2]>=0) 30 f[j]=max(f[j],f[j-v[i][1]-v[i][2]]+w[i][1]*v[i][1]+w[i][2]*v[i][2]); 31 if(w[i][0]==2&&j-v[i][1]-v[i][3]>=0) 32 { 33 f[j]=max(f[j],f[j-v[i][1]-v[i][3]]+w[i][1]*v[i][1]+w[i][3]*v[i][3]); 34 if(j-v[i][1]-v[i][2]-v[i][3]>=0) 35 f[j]=max(f[j],f[j-v[i][1]-v[i][2]-v[i][3]]+w[i][1]*v[i][1]+w[i][2]*v[i][2]+w[i][3]*v[i][3]); 36 } 37 } 38 printf("%d ",f[n]); 39 return 0; 40 }