zoukankan      html  css  js  c++  java
  • (转载)ranger原理

    一、业务背景

    大数据集群最基本的就是数据以及用于计算的资源,是一个公司的宝贵财富,我们需要将它们很好管理起来,将相应的数据和资源开放给对应的用户使用,防止被窃取、被破坏等,这就涉及到大数据安全。

    现状&&需求

    目前我们大数据集群的现状是处于裸奔状态,只要可以登录linux机器即可对集群继续相关操作

    所以集群安全对于我们来说迫在眉睫,主要需求有以下几个方面:

    • 支持多组件,最好能支持当前公司技术栈的主要组件,HDFS、HBASE、HIVE、YARN、STORM、KAFKA等
    • 支持细粒度的权限控制,可以达到HIVE列,HDFS目录,HBASE列,YARN队列,STORM拓扑,KAKFA的TOPIC
    • 开源,社区活跃,按照现有的集群改情况造改动尽可能的小,而且要符合业界的趋势。

    二、大数据安全组件介绍与对比

    目前比较常见的安全方案主要有三种:

    • Kerberos(业界比较常用的方案)
    • Apache Sentry(Cloudera选用的方案,cdh版本中集成)
    • Apache Ranger(Hortonworks选用的方案,hdp发行版中集成)

    1、Kerberos

    Kerberos是一种基于对称密钥的身份认证协议,它作为一个独立的第三方的身份认证服务,可以为其它服务提供身份认证功能,且支持SSO(即客户端身份认证后,可以访问多个服务如HBase/HDFS等)。

    图1

    服务名 作用
    KDC Kerberos的服务端程序,用于验证各个模块
    Client 需要访问服务的用户,KDC和Service会对用户的身份进行认证
    Service 即集成了Kerberos的服务,如HDFS/YARN/HBase等

    Kerberos协议过程主要有三个阶段,第一个阶段Client向KDC申请TGT,第二阶段Client通过获得的TGT向KDC申请用于访问Service的Ticket,第三个阶段是Client用返回的Ticket访问Service。

    优点:

    • 服务认证,防止broker datanode regionserver等组件冒充加入集群

    • 解决了服务端到服务端的认证,也解决了客户端到服务端的认证

    缺点:

    • kerberos为了安全性使用临时ticket,认证信息会失效,用户多的情况下重新认证繁琐

    • kerberos只能控制你访问或者拒绝访问一个服务,不能控制到很细的粒度,比如hdfs的某一个路径,hive的某一个表,对用户级别上的认证并没有实现(需要配合LDAP)

    2、Apache Sentry

    Apache Sentry是Cloudera公司发布的一个Hadoop安全开源组件,它提供了细粒度级、基于角色的授权.

    图2

    优点:

    • Sentry支持细粒度的hdfs元数据访问控制,对hive支持列级别的访问控制

    • Sentry通过基于角色的授权简化了管理,将访问同一数据集的不同特权级别授予多个角色

    • Sentry提供了一个统一平台方便管理

    • Sentry支持集成Kerberos

    缺点:

    • 组件只支持hive,hdfs,impala 不支持hbase,yarn,kafka,storm等

    3、Apache Ranger

    Apache Ranger是Hortonworks公司发布的一个Hadoop安全组件开源组件

    优点:

    • 提供了细粒度级(hive列级别)
    • 基于访问策略的权限模型
    • 权限控制插件式,统一方便的策略管理
    • 支持审计日志,可以记录各种操作的审计日志,提供统一的查询接口和界面
    • 丰富的组件支持(HDFS,HBASE,HIVE,YARN,KAFKA,STORM)
    • 支持和kerberos的集成
    • 提供了Rest接口供二次开发

    4、为什么我们选择Ranger

    • 多组件支持(HDFS,HBASE,HIVE,YARN,KAFKA,STORM),基本覆盖我们现有技术栈的组件
    • 支持审计日志,可以很好的查找到哪个用户在哪台机器上提交的任务明细,方便问题排查反馈
    • 拥有自己的用户体系,可以去除kerberos用户体系,方便和其他系统集成,同时提供各类接口可以调用

    综上:我们考虑到和开放平台的集成,以及我们的技术栈和集群操作的审计等几个问题最终选用了apache ranger

    三、Apache Ranger系统架构及实践

    1、架构介绍

    图3

    2、组件介绍

    • RangerAdmin

    以RESTFUL形式提供策略的增删改查接口,同时内置一个Web管理页面。

    • Service Plugin

    嵌入到各系统执行流程中,定期从RangerAdmin拉取策略,根据策略执行访问决策树,并且记录访问审计

    插件名称 安装节点
    Hdfs-Plugin NameNode
    Hbase-Plugin HMaster+HRegionServer
    Hive-Plugin HiveServer2
    Yarn-Plugin ResourceManager
    • Ranger-SDK

    对接开放平台,实现对用户、组、策略的管理

    3、权限模型

    访问权限无非是定义了”用户-资源-权限“这三者间的关系,Ranger基于策略来抽象这种关系,进而延伸出自己的权限模型。”用户-资源-权限”的含义详解:

    • 用户

      由User或Group来表达,User代表访问资源的用户,Group代表用户所属的用户组。

    • 资源

      不同的组件对应的业务资源是不一样的,比如

      • HDFS的FilePath
      • HBase的Table,Column-family,Column
      • Hive的Database,Table,Column
      • Yarn的对应的是Queue
    • 权限
      由(AllowACL, DenyACL)来表达,类似白名单和黑名单机制,AllowACL用来描述允许访问的情况,DenyACL用来描述拒绝访问的情况,不同的组件对应的权限也是不一样的。

    插件 权限项
    Hdfs Read Write Execute
    Hbase Read Write Create Admin
    Hive Select Create Update Drop Alter Index Lock Read Write All
    Yarn submit-app admin-queue

    4、权限实现

    Ranger-Admin职责:

    • 管理员对于各服务策略进行规划,分配相应的资源给相应的用户或组,存储在db中

    Service Plugin职责:

    • 定期从RangerAdmin拉取策略
    • 根据策略执行访问决策树
    • 实时记录访问审计

    策略执行过程:
    在这里插入图片描述
    策略优先级:

    • 黑名单优先级高于白名单
    • 黑名单排除优先级高于黑名单
    • 白名单排除优先级高于白名单

    决策下放:

    如果没有policy能决策访问,一般情况是认为没有权限拒绝访问,然而Ranger还可以选择将决策下放给系统自身的访问控制层

    组件集成插件原理:

    Service Extensible Interface Ranger Implement Class
    HDFS org.apache.hadoop.hdfs.server.namenode.INodeAttributeProvider org.apache.ranger.authorization.hadoop.RangerHdfsAuthorizer
    HBASE org.apache.hadoop.hbase.protobuf.generated.AccessControlProtos.AccessControlService.Interface org.apache.ranger.authorization.hbase.RangerAuthorizationCoprocessor
    Hive org.apache.hadoop.hive.ql.security.authorization.plugin.HiveAuthorizerFactory org.apache.ranger.authorization.hive.authorizer.RangerHiveAuthorizerFactory
    YARN org.apache.hadoop.yarn.security.YarnAuthorizationProvider org.apache.ranger.authorization.yarn.authorizer.RangerYarnAuthorizer

    ranger通过实现各组件扩展的权限接口,进行权限验证

    Hdfs实现原理

    hdfs-site.xml会修改如下配置:

     <property>
    <name>dfs.permissions.enabled</name>
    <value>true</value>
    </property>
    <property>
    <name>dfs.permissions</name>
    <value>true</value>
    </property>
    <property>
    <name>dfs.namenode.inode.attributes.provider.class</name>
    <value>org.apache.ranger.authorization.hadoop.RangerHdfsAuthorizer</value>
    </property>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    加载过程:

    在这里插入图片描述

    Hbase实现原理

    在安装完hbase插件后,hbase-site.xml会修改如下配置:

    <property>
    <name>hbase.security.authorization</name>
    <value>true</value>
    </property>
    <property>
    <name>hbase.coprocessor.master.classes</name>
    <value>org.apache.ranger.authorization.hbase.RangerAuthorizationCoprocessor</value>
    </property>
    <property>
    <name>hbase.coprocessor.region.classes</name>
    <value>org.apache.ranger.authorization.hbase.RangerAuthorizationCoprocessor</value>
    </property>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    加载过程:

    在这里插入图片描述

    Hive实现原理

    hiveserver2-site.xml

    <property>
    <name>hive.security.authorization.enabled</name>
    <value>true</value>
    </property>
    <property>
    <name>hive.security.authorization.manager</name>
    <value>org.apache.ranger.authorization.hive.authorizer.RangerHiveAuthorizerFactory</value>
    </property>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    加载过程:

    在这里插入图片描述

    Yarn实现原理

    yarn-site.xml

    <property>
    <name>yarn.acl.enable</name>
    <value>true</value>
    </property>
    <property>
    <name>yarn.authorization-provider</name>
    <value>org.apache.ranger.authorization.yarn.authorizer.RangerYarnAuthorizer</value>
    </property>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    加载过程:

    在这里插入图片描述

    四、Ranger实践

    1、组权限实现

    由于在调用各服务过程中使用hdfs shell、hbase-shell、hive-jdbc只能获取到用户信息,在只有组策略时会匹配不成功,认为没有权限,实现办法是加入ldap组件同步用户组信息,这样增加了系统的复杂性,我们通过改写ranger-admin代码,在客户端plugin获取策略时,将组权限赋予用户,这样就实现了组策略功能。

    原文:https://blog.csdn.net/qq475781638/article/details/90247153#Hive_227

  • 相关阅读:
    docker入门——centos安装
    NET应用——你的数据安全有必要升级
    mysql事件机制——定时任务
    是时候升级你的Js工具了-分页【基于JQ】
    优美库图片系统
    爬虫之蜂鸟网图片爬取
    壁纸提取
    CSDN刷阅读数
    tkinter基础-输入框、文本框
    数据结构与算法之选择排序
  • 原文地址:https://www.cnblogs.com/yjt1993/p/11837530.html
Copyright © 2011-2022 走看看