zoukankan      html  css  js  c++  java
  • 28.earch in Rotated Sorted Array(排序旋转数组中查找)

    Level:

      Medium

    题目描述:

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

    (i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).

    You are given a target value to search. If found in the array return its index, otherwise return -1.

    You may assume no duplicate exists in the array.

    Your algorithm's runtime complexity must be in the order of O(log n).

    Example 1:

    Input: nums = [4,5,6,7,0,1,2], target = 0
    Output: 4
    

    Example 2:

    Input: nums = [4,5,6,7,0,1,2], target = 3
    Output: -1
    

    思路分析:

      有序旋转数组,设置两个指针,left和right,分别指向数组的左端和右端,求数组的mid,如果mid的值大于left的值,那么旋转点在mid后面,如果小于left,则证明旋转点在mid前面。

      如果旋点在mid的后面,并且target的值大于left处的值,小于mid处的值,那么接下来就可以在left到mid之间进行二分查找target,否则对mid+1到right这部分数组进行递归操作。

      如果旋点在mid的前面,并且target的值大于mid处的值,小于right处的值,那么接下来就可以在mid到right之间进行二分查找target,否则对left到mid-1这部分数组进行递归操作。

    代码:

    public class Solution{
        public int search(int []nums,int target){
            if(nums==null||nums.length==0)
                return -1;
            int res=find(nums,0,nums.length-1,target);
            return res;
        }
        public int find(int []nums,int left,int right,int target){
            if(nums[left]==target)
                return left;
            if(nums[right]==target)
                return right;
            int mid=(left+right)/2;
            if(nums[mid]==target)
                return mid;
            if(left>right)
                return -1;
            if(nums[mid]>nums[left]){ //证明旋转点在mid后面
                if(target>nums[left]&&target<nums[mid]){
                    return binarySearch(nums,left,mid-1,target);
                }else{
                    return find(nums,mid+1,right,target);
                }
                
            }
            if(nums[mid]<nums[left]){ //证明旋转点在mid的前面
                if(target>nums[mid]&&target<nums[right]){
                    return binarySearch(nums,mid+1,right,target);
                }else{
                    return find(nums,left,mid-1,target);
                }
            }
            return -1;
        }
        public int binarySearch(int []nums,int left,int right,int target){
            if(left<=right){
                int mid=(left+right)/2;
                if(nums[mid]==target)
                    return mid;
                if(target>nums[mid]){
                    return binarySearch(nums,mid+1,right,target);
                }
                if(target<nums[mid]){
                    return binarySearch(nums,left,mid-1,target);
                }
            }
            return -1;
        }
    }
    
  • 相关阅读:
    快学Java NIO
    GoldenGate 12.3 MA架构介绍系列(4)–Restful API介绍
    GoldenGate 12.3 MA架构介绍系列(3)
    GoldenGate实时投递数据到大数据平台(1)-MongoDB
    GoldenGate 12.3 MA架构介绍系列(2)
    GoldenGate 12.3 MA架构介绍系列(1)
    关于集成抽取进程重启后的现象分析
    GoldenGate Logdump基本使用
    76 道 Oracle Goldengate 面试问题
    ogg 12.3 中 format release的变化
  • 原文地址:https://www.cnblogs.com/yjxyy/p/10797586.html
Copyright © 2011-2022 走看看