zoukankan      html  css  js  c++  java
  • 【译】itertools

    1、Itertools模块迭代器的种类

    1.1  无限迭代器:

    迭代器 参数 结果 示例
    count() start, [step] start, start+step, start+2*step, ... count(10) --> 10 11 12 13 14 ...
    cycle() p p0, p1, ... plast, p0, p1, ... cycle('ABCD') --> A B C D A B C D ...
    repeat() elem [,n] elem, elem, elem, ... endlessly or up to n times repeat(10, 3) --> 10 10 10

    1.2  终止于最短输入序列的迭代器:

    迭代器 参数 结果 示例
    accumulate() p [,func] p0, p0+p1, p0+p1+p2, ... accumulate([1,2,3,4,5]) --> 1 3 6 10 15 
    chain() p, q, ...  p0, p1, ... plast, q0, q1, ... chain('ABC', 'DEF') --> A B C D E F 
    chain.from_iterable() iterable p0, p1, ... plast, q0, q1, ... chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
    compress() data, selectors (d[0] if s[0]), (d[1] if s[1]), ... compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
    dropwhile() pred, seq  seq[n], seq[n+1], starting when pred fails dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
    filterfalse() pred, seq elements of seq where pred(elem) is false filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8 
    groupby() iterable[, keyfunc] sub-iterators grouped by value of keyfunc(v)  
    islice() seq, [start,] stop [, step]  elements from seq[start:stop:step] islice('ABCDEFG', 2, None) --> C D E F G
    starmap() func, seq func(*seq[0]), func(*seq[1]), ... starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
    takewhile() pred, seq seq[0], seq[1], until pred fails takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4 
    tee() it, n it1, it2, ... itn splits one iterator into n   
    zip_longest() p, q, ...  (p[0], q[0]), (p[1], q[1]), ...  zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D- 

    1.3  组合产生器

    迭代器 参数 结果
    product() p, q, ...[repeat=1] 笛卡尔乘积,等价于for循环嵌套(乘法原理)
    permutations() p[, r] r长度元组,所有可能的排序,没有重复的元素(排列)
    combinations() p, r  r长度元组,按排序顺序,没有重复元素(组合)
    combinations_with_replacement() p, r  r长度元组,按排序顺序,存在重复元素
    product('ABCD', repeat=2)   AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD
    permutations('ABCD', 2)   AB AC AD BA BC BD CA CB CD DA DB DC 
    combinations('ABCD', 2)   AB AC AD BC BD CD 
    combinations_with_replacement('ABCD', 2)   AA AB AC AD BB BC BD CC CD DD 

    2、

    repeat(object[, times])

     创建一个迭代器,它重复返回object对象,无穷尽地运行,除非指定了times参数。用作map()的参数,将不变参数映射到被调用函数。同时,用zip()来创建元组记录的不变部分。

    def repeat(object, times=None):
        # repeat(10, 3) --> 10 10 10
        if times is None:
            while True:
                yield object
        else:
            for i in range(times):
                yield object

    cycle(iterable)

     创建一个迭代器,它返回可迭代对象中的元素,并且保存每个可迭代对象中元素的副本,当可迭代对象中的元素被耗尽时,返回保存在副本中的元素。无穷无尽地重复这一行为。近似等价于:

    def cycle(iterable):
        # cycle('ABCD') --> A B C D A B C D A B C D ...
        saved = []
        for element in iterable:
            yield element
            saved.append(element)
        while saved:
            for element in saved:

    count(start=0, step=1)

     创建一个迭代器,它返回以start开始的均匀间隔的值。通常用作map()参数产生连续性的数据点。另外,用zip()来添加序列号,近似等价于:

    def count(start=0, step=1):
        # count(10) --> 10 11 12 13 14 ...
        # count(2.5, 0.5) -> 2.5 3.0 3.5 ...
        n = start
        while True:
            yield n
            n += step

    compress(data, selectors)

    创建一个迭代器,它过滤data的元素,返回仅当selecors为True时相应的data中的元素,当data或selectors可迭代对象中的元素被耗尽时停止。近似等价于:

    def compress(data, selectors):
        # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
        return (d for d, s in zip(data, selectors) if s)

    dropwhile(predicate, iterable)

    创建一个迭代器,只要predicate为True就从可迭代对象中移除元素;然后返回每个元素。请注意,迭代器不产生任何输出,直到predicate第一次变成False,所以它可能有很长的启动时间。近似等价于:

    def dropwhile(predicate, iterable):
        # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
        iterable = iter(iterable)
        for x in iterable:
            if not predicate(x):
                yield x
                break
        for x in iterable:
            yield x

    takewhile(predicate, iterable)

    创建一个迭代器,只要predicate为True就返回可迭代对象中的元素。近似等价于:

    def takewhile(predicate, iterable):
        # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
        for x in iterable:
            if predicate(x):
                yield x
            else:
                break

    tee(iterable, n=2)

    从单个可迭代对象中返回n个独立的迭代器,近似等价于:

    def tee(iterable, n=2):
        it = iter(iterable)
        deques = [collections.deque() for i in range(n)]
        def gen(mydeque):
            while True:
                if not mydeque:             # when the local deque is empty
                    try:
                        newval = next(it)   # fetch a new value and
                    except StopIteration:
                        return
                    for d in deques:        # load it to all the deques
                        d.append(newval)
                yield mydeque.popleft()
        return tuple(gen(d) for d in deques)

    filterfalse(predicateiterable)  --->filter

    创建一个迭代器,它过滤可迭代对象中的元素,返回仅当prediccate为False的元素,如果predicate为None,返回条目为False的元素。近似等价于:

    def filterfalse(predicate, iterable):
        # filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
        if predicate is None:
            predicate = bool
        for x in iterable:
            if not predicate(x):
                yield x

    starmap(function, iterable)  --->map

    创建一个迭代器,它使用从可迭代对象中获取的参数计算函数。当参数已经从单个可迭代对象(数据已经被预压缩)中分组到元组中时,而不是使用map()。map()和starmap()之间的区别与函数(a,b)和函数(* c)之间的区别相对应。 近似等价于:

    def starmap(function, iterable):
        # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
        for args in iterable:
            yield function(*args)

    zip_longest(*iterables, fillvalue=None)  --->zip

    创建一个迭代器,它聚合每个可迭代对象的元素,如果可迭代对象长度不均匀,那么缺失值将填充为fillvalue。迭代继续直到最长的可迭代对象被耗尽,近似等价于:

    class ZipExhausted(Exception):
        pass
    
    def zip_longest(*args, **kwds):
        # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
        fillvalue = kwds.get('fillvalue')
        counter = len(args) - 1
        def sentinel():
            nonlocal counter
            if not counter:
                raise ZipExhausted
            counter -= 1
            yield fillvalue
        fillers = repeat(fillvalue)
        iterators = [chain(it, sentinel(), fillers) for it in args]
        try:
            while iterators:
                yield tuple(map(next, iterators))
        except ZipExhausted:
            pass

    如果其中一个可迭代对象可能是无限的,那么zip_longest()函数应该使用限制调用次数的东西(例如islice()或takewhile())来包装。如果未指定,则fillvalue默认为None。

    3、Itertools模块的配方

    def take(n, iterable):
        "Return first n items of the iterable as a list"
        return list(islice(iterable, n))
    
    def tabulate(function, start=0):
        "Return function(0), function(1), ..."
        return map(function, count(start))
    
    def tail(n, iterable):
        "Return an iterator over the last n items"
        # tail(3, 'ABCDEFG') --> E F G
        return iter(collections.deque(iterable, maxlen=n))
    
    def consume(iterator, n):
        "Advance the iterator n-steps ahead. If n is none, consume entirely."
        # Use functions that consume iterators at C speed.
        if n is None:
            # feed the entire iterator into a zero-length deque
            collections.deque(iterator, maxlen=0)
        else:
            # advance to the empty slice starting at position n
            next(islice(iterator, n, n), None)
    
    def nth(iterable, n, default=None):
        "Returns the nth item or a default value"
        return next(islice(iterable, n, None), default)
    
    def all_equal(iterable):
        "Returns True if all the elements are equal to each other"
        g = groupby(iterable)
        return next(g, True) and not next(g, False)
    
    def quantify(iterable, pred=bool):
        "Count how many times the predicate is true"
        return sum(map(pred, iterable))
    
    def padnone(iterable):
        """Returns the sequence elements and then returns None indefinitely.
    
        Useful for emulating the behavior of the built-in map() function.
        """
        return chain(iterable, repeat(None))
    
    def ncycles(iterable, n):
        "Returns the sequence elements n times"
        return chain.from_iterable(repeat(tuple(iterable), n))
    
    def dotproduct(vec1, vec2):
        return sum(map(operator.mul, vec1, vec2))
    
    def flatten(listOfLists):
        "Flatten one level of nesting"
        return chain.from_iterable(listOfLists)
    
    def repeatfunc(func, times=None, *args):
        """Repeat calls to func with specified arguments.
    
        Example:  repeatfunc(random.random)
        """
        if times is None:
            return starmap(func, repeat(args))
        return starmap(func, repeat(args, times))
    
    def pairwise(iterable):
        "s -> (s0,s1), (s1,s2), (s2, s3), ..."
        a, b = tee(iterable)
        next(b, None)
        return zip(a, b)
    
    def grouper(iterable, n, fillvalue=None):
        "Collect data into fixed-length chunks or blocks"
        # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
        args = [iter(iterable)] * n
        return zip_longest(*args, fillvalue=fillvalue)
    
    def roundrobin(*iterables):
        "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
        # Recipe credited to George Sakkis
        pending = len(iterables)
        nexts = cycle(iter(it).__next__ for it in iterables)
        while pending:
            try:
                for next in nexts:
                    yield next()
            except StopIteration:
                pending -= 1
                nexts = cycle(islice(nexts, pending))
    
    def partition(pred, iterable):
        'Use a predicate to partition entries into false entries and true entries'
        # partition(is_odd, range(10)) --> 0 2 4 6 8   and  1 3 5 7 9
        t1, t2 = tee(iterable)
        return filterfalse(pred, t1), filter(pred, t2)
    
    def powerset(iterable):
        "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
        s = list(iterable)
        return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
    
    def unique_everseen(iterable, key=None):
        "List unique elements, preserving order. Remember all elements ever seen."
        # unique_everseen('AAAABBBCCDAABBB') --> A B C D
        # unique_everseen('ABBCcAD', str.lower) --> A B C D
        seen = set()
        seen_add = seen.add
        if key is None:
            for element in filterfalse(seen.__contains__, iterable):
                seen_add(element)
                yield element
        else:
            for element in iterable:
                k = key(element)
                if k not in seen:
                    seen_add(k)
                    yield element
    
    def unique_justseen(iterable, key=None):
        "List unique elements, preserving order. Remember only the element just seen."
        # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
        # unique_justseen('ABBCcAD', str.lower) --> A B C A D
        return map(next, map(itemgetter(1), groupby(iterable, key)))
    
    def iter_except(func, exception, first=None):
        """ Call a function repeatedly until an exception is raised.
    
        Converts a call-until-exception interface to an iterator interface.
        Like builtins.iter(func, sentinel) but uses an exception instead
        of a sentinel to end the loop.
    
        Examples:
            iter_except(functools.partial(heappop, h), IndexError)   # priority queue iterator
            iter_except(d.popitem, KeyError)                         # non-blocking dict iterator
            iter_except(d.popleft, IndexError)                       # non-blocking deque iterator
            iter_except(q.get_nowait, Queue.Empty)                   # loop over a producer Queue
            iter_except(s.pop, KeyError)                             # non-blocking set iterator
    
        """
        try:
            if first is not None:
                yield first()            # For database APIs needing an initial cast to db.first()
            while True:
                yield func()
        except exception:
            pass
    
    def first_true(iterable, default=False, pred=None):
        """Returns the first true value in the iterable.
    
        If no true value is found, returns *default*
    
        If *pred* is not None, returns the first item
        for which pred(item) is true.
    
        """
        # first_true([a,b,c], x) --> a or b or c or x
        # first_true([a,b], x, f) --> a if f(a) else b if f(b) else x
        return next(filter(pred, iterable), default)
    
    def random_product(*args, repeat=1):
        "Random selection from itertools.product(*args, **kwds)"
        pools = [tuple(pool) for pool in args] * repeat
        return tuple(random.choice(pool) for pool in pools)
    
    def random_permutation(iterable, r=None):
        "Random selection from itertools.permutations(iterable, r)"
        pool = tuple(iterable)
        r = len(pool) if r is None else r
        return tuple(random.sample(pool, r))
    
    def random_combination(iterable, r):
        "Random selection from itertools.combinations(iterable, r)"
        pool = tuple(iterable)
        n = len(pool)
        indices = sorted(random.sample(range(n), r))
        return tuple(pool[i] for i in indices)
    
    def random_combination_with_replacement(iterable, r):
        "Random selection from itertools.combinations_with_replacement(iterable, r)"
        pool = tuple(iterable)
        n = len(pool)
        indices = sorted(random.randrange(n) for i in range(r))
        return tuple(pool[i] for i in indices)
  • 相关阅读:
    C++中的类模板详细讲述
    IE6
    Active Driectory 操作(转来放起来,不要丢了)
    The length of the query string for this request exceeds the configured maxQueryStringLength value
    试一下用word发布一篇文章
    各种分享api
    汇编语言程序设计 检测点1.1
    Windows下配置使用MemCached
    chrome
    ASP.NET 把集合导出为Excel的一个助手类
  • 原文地址:https://www.cnblogs.com/yl153/p/6850676.html
Copyright © 2011-2022 走看看