第一:函数
一:内置函数
MYSQL中提供了很多内置的函数,以下:
CHAR_LENGTH(str) 返回值为字符串str 的长度,长度的单位为字符。一个多字节字符算作一个单字符。 对于一个包含五个二字节字符集, LENGTH()返回值为 10, 而CHAR_LENGTH()的返回值为5。 eg: mysql> select char_length('zhang') -> ; +----------------------+ | char_length('zhang') | +----------------------+ | 5 | +----------------------+ 1 row in set (0.00 sec) CONCAT(str1,str2,...) 字符串拼接 如有任何一个参数为NULL ,则返回值为 NULL。 mysql> select concat('zz','l') -> ; +------------------+ | concat('zz','l') | +------------------+ | zzl | +------------------+ 1 row in set (0.01 sec) CONCAT_WS(separator,str1,str2,...) 字符串拼接(自定义连接符) CONCAT_WS()不会忽略任何空字符串。 (然而会忽略所有的 NULL)。 mysql> select CONCAT_WS('**','zzl','cyy'); +-----------------------------+ | CONCAT_WS('**','zzl','cyy') | +-----------------------------+ | zzl**cyy | +-----------------------------+ 1 row in set (0.00 sec) CONV(N,from_base,to_base) 进制转换 mysql> SELECT CONV('a',16,2); 表示将 a 由16进制转换为2进制字符串表示 +----------------+ | CONV('a',16,2) | +----------------+ | 1010 | +----------------+ 1 row in set (0.01 sec) mysql> SELECT CONV('10',8,2); 表示将 a 由8进制转换为2进制字符串表示 +----------------+ | CONV('10',8,2) | +----------------+ | 1000 | +----------------+ 1 row in set (0.00 sec) FORMAT(X,D) 将数字X 的格式写为'#,###,###.##',以四舍五入的方式保留小数点后 D 位, 并将结果以字符串的形式返回。若 D 为 0, 则返回结果不带有小数点,或不含小数部分。 eg: mysql> SELECT FORMAT(89333322.31,5); +-----------------------+ | FORMAT(89333322.31,5) | +-----------------------+ | 89,333,322.31000 | +-----------------------+ 1 row in set (0.00 sec) INSERT(str,pos,len,newstr) 在str的指定位置插入字符串 pos:要替换位置其实位置 len:替换的长度 newstr:新字符串 特别的: 如果pos超过原字符串长度,则返回原字符串 如果len超过原字符串长度,则由新字符串完全替换 mysql> select insert('zhang','1','1','Z') -> ; +-----------------------------+ | insert('zhang','1','1','Z') | +-----------------------------+ | Zhang | +-----------------------------+ 1 row in set (0.01 sec) INSTR(str,substr) 返回字符串 str 中子字符串的第一个出现位置。 mysql> select instr('zhang','an') -> ; +---------------------+ | instr('zhang','an') | +---------------------+ | 3 | +---------------------+ 1 row in set (0.01 sec) LEFT(str,len) 返回字符串str 从开始的len位置的子序列字符。 mysql> select left('zhang',8) -> ; +-----------------+ | left('zhang',8) | +-----------------+ | zhang | +-----------------+ 1 row in set (0.00 sec) mysql> select left('zhang',3); +-----------------+ | left('zhang',3) | +-----------------+ | zha | +-----------------+ 1 row in set (0.00 sec) LOWER(str) 变小写 mysql> select LOWER('ZHAng'); +----------------+ | LOWER('ZHAng') | +----------------+ | zhang | +----------------+ 1 row in set (0.00 sec) UPPER(str) 变大写 mysql> select UPPER('ZHAng'); +----------------+ | UPPER('ZHAng') | +----------------+ | ZHANG | +----------------+ 1 row in set (0.00 sec) SUBSTRING(str,pos,len) 获取字符串子序列 mysql> select substring('zhang','3','2') -> ; +----------------------------+ | substring('zhang','3','2') | +----------------------------+ | an | +----------------------------+ 1 row in set (0.00 sec) LOCATE(substr,str,pos) 获取子序列索引位置 mysql> select locate('f','zhangfddadadafff','1'); +------------------------------------+ | locate('f','zhangfddadadafff','1') | +------------------------------------+ | 6 | +------------------------------------+ 1 row in set (0.00 sec) REPEAT(str,count) 返回一个由重复的字符串str 组成的字符串,字符串str的数目等于count 。 若 count <= 0,则返回一个空字符串。 若str 或 count 为 NULL,则返回 NULL 。 mysql> select repeat('zhang',3) -> ; +-------------------+ | repeat('zhang',3) | +-------------------+ | zhangzhangzhang | +-------------------+ 1 row in set (0.01 sec) mysql> select repeat('zhang',2) -> ; +-------------------+ | repeat('zhang',2) | +-------------------+ | zhangzhang | +-------------------+ 1 row in set (0.00 sec) REPLACE(str,from_str,to_str) 返回字符串str 以及所有被字符串to_str替代的字符串from_str 。 mysql> select replace('zhangzhanling','ling','zhan') -> ; +----------------------------------------+ | replace('zhangzhanling','ling','zhan') | +----------------------------------------+ | zhangzhanzhan | +----------------------------------------+ 1 row in set (0.00 sec) REVERSE(str) 返回字符串 str ,顺序和字符顺序相反。 mysql> select reverse('zhang') -> ; +------------------+ | reverse('zhang') | +------------------+ | gnahz | +------------------+ 1 row in set (0.01 sec) RIGHT(str,len) 从字符串str 开始,返回从后边开始len个字符组成的子序列 mysql> select right('zhang','3') -> ; +--------------------+ | right('zhang','3') | +--------------------+ | ang | +--------------------+ 1 row in set (0.00 sec) SPACE(N) 返回一个由N空格组成的字符串。 mysql> select space(4) -> ; +----------+ | space(4) | +----------+ | | +----------+ 1 row in set (0.00 sec) 不带有len 参数的格式从字符串str返回一个子字符串,起始于位置 pos。带有len参数的格式从字符串str返回一个长度同len字符相同的子字符串,起始于位置 pos。 使用 FROM的格式为标准 SQL 语法。也可能对pos使用一个负值。假若这样,则子字符串的位置起始于字符串结尾的pos 字符,而不是字符串的开头位置。在以下格式的函数中可以对pos 使用一个负值。 SUBSTRING(str,pos) , mysql> SELECT SUBSTRING('zhangzhanling',5); +------------------------------+ | SUBSTRING('zhangzhanling',5) | +------------------------------+ | gzhanling | +------------------------------+ 1 row in set (0.00 sec) SUBSTRING(str FROM pos) mysql> SELECT SUBSTRING('zhangzhanling' from 5); +-----------------------------------+ | SUBSTRING('zhangzhanling' from 5) | +-----------------------------------+ | gzhanling | +-----------------------------------+ 1 row in set (0.00 sec) SUBSTRING(str,pos,len) , mysql> SELECT SUBSTRING('zhangzhanling',4,5); +--------------------------------+ | SUBSTRING('zhangzhanling',4,5) | +--------------------------------+ | ngzha | +--------------------------------+ 1 row in set (0.00 sec) SUBSTRING(str FROM pos FOR len) mysql> SELECT SUBSTRING('zhangzhanling' from -4 for 2); +------------------------------------------+ | SUBSTRING('zhangzhanling' from -4 for 2) | +------------------------------------------+ | li | +------------------------------------------+ 1 row in set (0.01 sec)
更多的请参照:
二:自定义函数
1.查看自定义函数功能是个否开启:
mysql> show variables like '%func%'; +---------------------------------+-------+ | Variable_name | Value | +---------------------------------+-------+ | log_bin_trust_function_creators | OFF | +---------------------------------+-------+ 1 row in set, 12 warnings (0.02 sec) mysql> SET GLOBAL log_bin_trust_function_creators=1; 开启自定义函数功能 Query OK, 0 rows affected (0.00 sec) mysql> show variables like '%func%'; +---------------------------------+-------+ | Variable_name | Value | +---------------------------------+-------+ | log_bin_trust_function_creators | ON | +---------------------------------+-------+ 1 row in set, 12 warnings (0.01 sec) 注:SET GLOBAL log_bin_trust_function_creators=1; 关闭自定义函数功能
2.基本语法:
delimiter 自定义符号 -- 如果函数体只有一条语句, begin和end可以省略, 同时delimiter也可以省略 create function 函数名(形参列表) returns 返回类型 -- 注意是retruns begin 函数体 -- 函数内定义的变量如:set @x = 1; 变量x为全局变量,在函数外面也可以使用 返回值 end 自定义符号 delimiter ;
3.创建自定义函数示例:
mysql> delimiter $$ mysql> create function my(a int, b int) returns int -> begin -> return a + b; -> end -> $$ Query OK, 0 rows affected (0.00 sec) mysql> delimiter ;
4.删除函数:
mysql> drop function my; Query OK, 0 rows affected (0.02 sec)
5.执行函数:
mysql> select my(11,23); +-----------+ | my(11,23) | +-----------+ | 34 | +-----------+ 1 row in set (0.01 sec)
第二:索引
一:索引介绍
为什么用索引?
在我们的生产环境中,一般读(查询)写(插入,更新,删除)的比例能占到1:10甚至更多,因此对查询语句的优化是非常重要的,这里就必须用索引喽。
索引是什么?
索引是数据库中专门用于帮助用户快速查询数据的一种数据结构,类似与字典中的目录,查找字典内容时可以根据目录查找到数据的存放位置目录,然后直接获取。
索引的好处是什么?
1.索引可以加快查询速度,但是并不是索引越多越好。
2.mysql中的primary key,unique,联合唯一也都是索引,这些索引除了加速查找以外,还有约束的功能
如果mysql数据库添加太多的索引,磁盘的iostat磁盘使用率会持续很高,甚至长时间达到100%。
二:mysql中常见的索引:
普通索引:
只有加速查找的功能
eg:
创建表 + 索引 mysql> create table in1( -> nid int not null auto_increment primary key, -> name varchar(32) not null, -> email varchar(64) not null, -> extra text, -> index ix_name (name) -> ); Query OK, 0 rows affected (0.05 sec) 创建索引 mysql> create index int_name on in1(nid); Query OK, 0 rows affected (0.04 sec) Records: 0 Duplicates: 0 Warnings: 0 查看索引 mysql> show index from in1; +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | in1 | 0 | PRIMARY | 1 | nid | A | 0 | NULL | NULL | | BTREE | | | | in1 | 1 | ix_name | 1 | name | A | 0 | NULL | NULL | | BTREE | | | | in1 | 1 | int_name | 1 | nid | A | 0 | NULL | NULL | | BTREE | | | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 3 rows in set (0.01 sec) 删除索引 mysql> drop index int_name on in1; Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0 查看是否删除成功 mysql> show index from in1; +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | in1 | 0 | PRIMARY | 1 | nid | A | 0 | NULL | NULL | | BTREE | | | | in1 | 1 | ix_name | 1 | name | A | 0 | NULL | NULL | | BTREE | | | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 2 rows in set (0.00 sec) 注意:对于创建索引时如果是BLOB 和 TEXT 类型,必须指定length。 create index ix_extra on in1(extra(32));
唯一索引:
主键索引 PRIMARY KEY:加速查找+约束(不为空、不能重复)
唯一索引 UNIQUE:加速查找+约束(不能重复)
创建表 mysql> create table in2( -> nid int not null auto_increment primary key, -> name varchar(32) not null, -> email varchar(64) not null, -> extra text, -> unique ix_name (name) -> ); Query OK, 0 rows affected (0.03 sec) 创建唯一索引 mysql> create unique index nid_name on in2(nid); Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0
主键索引:
加速查询 和 唯一约束(不可含null)
第一种创建方式: mysql> create table in3( -> nid int not null auto_increment primary key, -> name varchar(32) not null, -> email varchar(64) not null, -> extra text, -> index ix_name (name) -> ); Query OK, 0 rows affected (0.03 sec) 第二种创建方式: mysql> create table in4( -> nid int not null auto_increment, -> name varchar(32) not null, -> email varchar(64) not null, -> extra text, -> primary key(nid), -> index ix_name (name) -> ); Query OK, 0 rows affected (0.03 sec) 删除主键索引 mysql> alter table in4 modify nid int, drop primary key; Query OK, 0 rows affected (0.05 sec) Records: 0 Duplicates: 0 Warnings: 0 增加主键索引 mysql> alter table in4 add primary key(name); Query OK, 0 rows affected (0.05 sec) Records: 0 Duplicates: 0 Warnings: 0
组合索引:
简单的讲是将n个列组合成一个索引
PRIMARY KEY(id,name):联合主键索引
UNIQUE(id,name):联合唯一索引
INDEX(id,name):联合普通索引
mysql> create table in5( -> nid int not null auto_increment primary key, -> name varchar(32) not null, -> email varchar(64) not null, -> extra text -> ); PRIMARY KEY(id,name):联合主键索引 mysql> create index ix_name_email on in5(nid,name); Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0 UNIQUE(id,name):联合唯一索引 mysql> alter table in5 add unique index(nid,name); Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0 INDEX(id,name):联合普通索引 mysql> create index ix_name on in5(name,email); Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0
第三:测试索引
一:测试准备数据
创建表 mysql> create table s1( -> id int, -> name varchar(20), -> gender char(6), -> email varchar(50) -> ); Query OK, 0 rows affected (0.03 sec) 创建存储过程,实现批量插入记录 mysql> delimiter $$ 声明存储过程的结束符号 :$$ mysql> create procedure auto_insert1() -> BEGIN -> declare i int default 1; -> while(i<3000000)do -> insert into s1 values(i,'zzl','man',concat('zzl',i,'@wsdashi.com')); -> set i=i+1; -> end while; -> END #$$结束 Query OK, 0 rows affected (0.01 sec) mysql> delimiter ;重新声明分号为结束符号 查看存储过程 mysql> show create procedure auto_insert1G *************************** 1. row *************************** Procedure: auto_insert1 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION Create Procedure: CREATE DEFINER=`root`@`localhost` PROCEDURE `auto_insert1`() BEGIN declare i int default 1; while(i<3000000)do insert into s1 values(i,'zzl','man',concat('zzl',i,'@wsdashi.com')); set i=i+1; end while; END character_set_client: gbk collation_connection: gbk_chinese_ci Database Collation: latin1_swedish_ci 1 row in set (0.00 sec) 调用存储过程 mysql> call auto_insert1();
mysql> call auto_insert1();
Query OK, 1 row affected (6 hours 30 min 52.60 sec)
二:没有建索引的情况下查询
mysql> select * from s1 where id=3500000; Empty set (1.63 sec)
时间1.63 sec
三:已经存在大量数据建索引
mysql> create index s1_id on s1(id); Query OK, 0 rows affected (7.54 sec) Records: 0 Duplicates: 0 Warnings: 0
注:如果在生产环境下面,在已经有的数据中,创建索引的时候,会锁表,用户不能使用该表,所以一般这样的操作要晚上做
四:索引建立完成,并且依据刚建立的字段索引查询数据
mysql> select * from s1 where id=35000000; Empty set (0.01 sec)
时间0.01 sec
五:小结:
1. 一定是为搜索条件的字段创建索引,比如select * from s1 where id = 222;就需要为id加上索引,如果id加上索引查询其他的字段是不管用的
2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,建完后查询速度加快
注意:在生产环境中,一个新的功能上线,需要建表,站在运维的角度,一定要多问以下开发,这个表是否有大量的读操作,如果有的话,需要开发明确怎么查询的,从而建索引,如果读的少,写的多,可根据情况不建索引,索引过多会消耗磁盘利用率的。
第四:如何正确命中索引
一:索引未命中
1.范围问题:或者说条件不明确,条件中出现这些符号或关键字:>、>=、<、<=、!= 、between...and...、like、
等于:指定要找2000这个id号,在索引树中可以快速的查找 mysql> select count(*) from s1 where id=2000; +----------+ | count(*) | +----------+ | 1 | +----------+ 1 row in set (0.00 sec) 大于:会利用索引树,没有指定那个id,而是指定了一个范围,这个范围包含大于2000的id,则mysql会拿着2001去搜索树中找一次,然后2002在找,一次类推,整体下来,和整表扫描没啥区别 mysql> select count(*) from s1 where id>2000; +----------+ | count(*) | +----------+ | 2997999 | +----------+ 1 row in set (1.21 sec) 如果范围小的话,查询速度仍然是很快的。 mysql> select count(*) from s1 where id>2000 and id<3000; +----------+ | count(*) | +----------+ | 999 | +----------+ 1 row in set (0.01 sec) 不等于:不等于2000,范围很大,查询很慢。 mysql> select count(*) from s1 where id != 2000; +----------+ | count(*) | +----------+ | 2999998 | +----------+ 1 row in set (1.20 sec) 等于2000,就一个数,则查询很快。 mysql> select count(*) from s1 where id = 2000; +----------+ | count(*) | +----------+ | 1 | +----------+ 1 row in set (0.00 sec) between ...and... 范围大的,查询依然还是很慢的 mysql> select count(*) from s1 where id between 1 and 3000000; +----------+ | count(*) | +----------+ | 2999999 | +----------+ 1 row in set (1.30 sec) 范围小的,查询是快的 mysql> select count(*) from s1 where id between 1 and 2; +----------+ | count(*) | +----------+ | 2 | +----------+ 1 row in set (0.00 sec) like:前面带%号查询比后面带%或者等于特定值的要慢 mysql> select count(*) from s1 where id like '1000dd'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (1.09 sec) mysql> select count(*) from s1 where id like '1000dd%'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (1.08 sec) mysql> select count(*) from s1 where id like '%1000'; +----------+ | count(*) | +----------+ | 300 | +----------+ 1 row in set (1.14 sec)
2.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,这个比例使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录
查看下表结构 mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | YES | MUL | NULL | | | name | varchar(20) | YES | | NULL | | | gender | char(6) | YES | | NULL | | | email | varchar(50) | YES | | NULL | | +--------+-------------+------+-----+---------+-------+ 4 rows in set (0.02 sec) 删除id的索引 mysql> drop index s1_id on s1; Query OK, 0 rows affected (0.03 sec) Records: 0 Duplicates: 0 Warnings: 0 查看下是否删除成功 mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | YES | | NULL | | | name | varchar(20) | YES | | NULL | | | gender | char(6) | YES | | NULL | | | email | varchar(50) | YES | | NULL | | +--------+-------------+------+-----+---------+-------+ 4 rows in set (0.00 sec) 查看一个name等于dddd的个数有多少,速度是慢的 mysql> select count(*) from s1 where name='dddd'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (1.77 sec) 创建name的索引 mysql> create index s1_name on s1(name); Query OK, 0 rows affected (8.35 sec) Records: 0 Duplicates: 0 Warnings: 0 查询速度明显提升很多 mysql> select count(*) from s1 where name='dddd'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.01 sec) 查询name为zzl的字段,速度再一次变慢 mysql> select count(*) from s1 where name='zzl'; +----------+ | count(*) | +----------+ | 2999999 | +----------+ 1 row in set (1.05 sec) 为何是这种情况呢? 我们编写存储过程为表s1批量添加记录,name字段的值均为zzl,也就是说name这个字段的区分度很低 利用b+树的结构,查询的速度与树的高度成反比,要想将树的高低控制的很低, 需要保证:在某一层内数据项均是按照从左到右,从小到大的顺序依次排开,即左1<左2<左3<... 而对于区分度低的字段,无法找到大小关系,因为值都是相等的,毫无疑问,还想要用b+树存放这些等值的数据, 只能增加树的高度,字段的区分度越低,则树的高度越高。极端的情况,索引字段的值都一样,那么b+树几乎成了一根棍。 本例中就是这种极端的情况,name字段所有的值均为'zzl' 所以得出,为区分度低的字段建立索引,索引树的高度会很高。 1:如果条件是name='dddd',那么肯定是可以第一时间判断出'dddd'是不在索引树中的(因为树中所有的值均为'zzl’),所以查询速度很快 2:如果条件正好是name='zzl',查询时,我们永远无法从树的某个位置得到一个明确的范围,只能往下找,在往下找,在在往下找。。。这与全表扫描的IO次数没有多大区别,所以速度很慢
3.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
查看表结构
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | YES | | NULL | |
| name | varchar(20) | YES | MUL | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)
删除原有的索引
mysql> drop index s1_name on s1;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0
确认删除
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | YES | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)
没有建索引之前,查询速度是很慢点
mysql> select count(*) from s1 where name='zzl' and gender='man' and email='137@wsdashi.com'
-> ;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (1.73 sec)
创建联合索引
mysql> create index s1_name on s1(name,gender,email);
Query OK, 0 rows affected (15.21 sec)
Records: 0 Duplicates: 0 Warnings: 0
查询速度加快
mysql> select count(*) from s1 where name='zzl' and gender='man' and email='137@wsdashi.com'
-> ;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec)
随意的还位置,查询速度不变
mysql> select count(*) from s1 where name='zzl' and email='137@wsdashi.com' and gender='man';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec)
但是如果是两个的话,查询速度是慢的
mysql> select count(*) from s1 where name='zzl' and email='137@wsdashi.com' ;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (2.00 sec)
是一个的话,查询速度也是慢的
mysql> select count(*) from s1 where name='zzl' ;
+----------+
| count(*) |
+----------+
| 2999999 |
+----------+
1 row in set (1.91 sec)
4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)
查看表结构 mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | YES | | NULL | | | name | varchar(20) | YES | MUL | NULL | | | gender | char(6) | YES | | NULL | | | email | varchar(50) | YES | | NULL | | +--------+-------------+------+-----+---------+-------+ 4 rows in set (0.01 sec) 删除原有的索引 mysql> drop index s1_name on s1; Query OK, 0 rows affected (0.03 sec) Records: 0 Duplicates: 0 Warnings: 0 创建id索引 mysql> create index s1_name on s1(id); Query OK, 0 rows affected (7.63 sec) Records: 0 Duplicates: 0 Warnings: 0 查看表结构 mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | YES | MUL | NULL | | | name | varchar(20) | YES | | NULL | | | gender | char(6) | YES | | NULL | | | email | varchar(50) | YES | | NULL | | +--------+-------------+------+-----+---------+-------+ 4 rows in set (0.01 sec) 查询id的速度是相当快的,因为id有索引。 mysql> select count(*) from s1 where id=4000; +----------+ | count(*) | +----------+ | 1 | +----------+ 1 row in set (0.00 sec) 索引id字段参与了计算,无法拿到一个明确的值去索引树中查找,所以查询速度是比较慢的 mysql> select count(*) from s1 where id*2=4000; +----------+ | count(*) | +----------+ | 1 | +----------+ 1 row in set (1.02 sec)
5.and/or
1、and与or的逻辑 条件1 and 条件2:所有条件都成立才算成立,但凡要有一个条件不成立则最终结果不成立 条件1 or 条件2:只要有一个条件成立则最终结果就成立 2、and的工作原理 条件: a = 10 and b = 'ddd' and c > 3 and d =4 索引: 制作联合索引(d,a,b,c) 工作原理: 对于连续多个and:mysql会按照联合索引,从左到右的顺序找一个区分度高的索引字段(这样便可以快速锁定很小的范围),加速查询,即按照d—>a->b->c的顺序 3、or的工作原理 条件: a = 10 or b = 'ddd' or c > 3 or d =4 索引: 制作联合索引(d,a,b,c) 工作原理: 对于连续多个or:mysql会按照条件的顺序,从左到右依次判断,即a->b->c->d
eg:
mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | YES | MUL | NULL | | | name | varchar(20) | YES | | NULL | | | gender | char(6) | YES | | NULL | | | email | varchar(50) | YES | | NULL | | +--------+-------------+------+-----+---------+-------+ 4 rows in set (0.00 sec) name字段添加索引,但是改字段的区分度比较低 mysql> create index s1name on s1(name); Query OK, 0 rows affected (9.00 sec) Records: 0 Duplicates: 0 Warnings: 0 name='ddd'可以很快的从索引树中区分出该字段不存在,因而速度会很快 mysql> select count(*) from s1 where name='ddd'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.00 sec) gender是非索引字段的,但是,name='ddd'不成立的话,就不用管gender的条件了呢,相当于只有name='ddd'速度还是很快的; mysql> select count(*) from s1 where name='ddd' and gender='man' -> ; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.00 sec) 在左边条件成立但是索引字段的区分度低的情况下(name与gender均属于这种情况), 会依次往右找到一个区分度高的索引字段,加速查询 mysql> select count(*) from s1 where name='ddd' and gender='man'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.00 sec) mysql> select count(*) from s1 where name='zzl' and gender='man'; +----------+ | count(*) | +----------+ | 2999999 | +----------+ 1 row in set (20.95 sec) mysql> create index s1_gender on s1(gender); Query OK, 0 rows affected (11.72 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(*) from s1 where name='zzl' and gender='man'; +----------+ | count(*) | +----------+ | 2999999 | +----------+ 1 row in set (3.74 sec) mysql> select count(*) from s1 where name='zzl' and gender='xxx'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.01 sec) mysql> select count(*) from s1 where name='zzl' and gender='man'; +----------+ | count(*) | +----------+ | 2999999 | +----------+ 1 row in set (3.01 sec) mysql> select count(*) from s1 where name='zzl' and gender='man' and id=333; +----------+ | count(*) | +----------+ | 1 | +----------+ 1 row in set (0.01 sec) mysql> select count(*) from s1 where name='zzl' and gender='man' and id>333; +----------+ | count(*) | +----------+ | 2999666 | +----------+ 1 row in set (18.17 sec) mysql> select count(*) from s1 where name='zzl' and gender='xxx' and id>333; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.02 sec) mysql> select count(*) from s1 where name='zzl' and -> gender='xxx' and id>222; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.00 sec) mysql> select count(*) from s1 where name='zzl' and -> gender='man' and id>222; +----------+ | count(*) | +----------+ | 2999777 | +----------+ 1 row in set (21.25 sec) 当前面三个条件都成立的时候,都无法用索引达到加速的目的,name和gender是因为区分度低,第三个id因为范围太大了,第四个email的区分度很高,但是没有添加索引,所以该语句查询速度是非常的低的 mysql> select count(*) from s1 where name='zzl' and -> gender='man' and id> 222 and email='dddd'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (22.87 sec) 给email字段添加索引 mysql> create index s1_email on s1(email); Query OK, 0 rows affected (16.55 sec) Records: 0 Duplicates: 0 Warnings: 0 添加上email字段的索引后,索引明显的提升 mysql> select count(*) from s1 where name='zzl' and -> gender='man' and id> 222 and email='dddd'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.02 sec) 经过分析,在条件为name='zzl' and gender='man' and id>222 and email='dddd'的情况下,我们完全没必要为前三个条件的字段加索引,因为只能用上email字段的索引, 前三个字段的索引反而会降低我们的查询效率 验证: mysql> select count(*) from s1 where name='zzl' and -> gender='man' and id> 222 and email='dddd'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.02 sec) mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | YES | MUL | NULL | | | name | varchar(20) | YES | MUL | NULL | | | gender | char(6) | YES | MUL | NULL | | | email | varchar(50) | YES | MUL | NULL | | +--------+-------------+------+-----+---------+-------+ 4 rows in set (0.01 sec) mysql> drop index s1_gender on s1; Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> drop index s1name on s1; Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> drop index s1_name on s1; Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | YES | | NULL | | | name | varchar(20) | YES | | NULL | | | gender | char(6) | YES | | NULL | | | email | varchar(50) | YES | MUL | NULL | | +--------+-------------+------+-----+---------+-------+ 4 rows in set (0.01 sec) mysql> select count(*) from s1 where name='zzl' and -> gender='man' and id> 222 and email='dddd'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.00 sec) 删掉索引后时间是0.00不删是0.02,同时也论证了不是索引越多越好的哦
6. 最左前缀匹配原则
对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配(指的是范围大了,有索引速度也慢),比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
mysql> drop index s1_email on s1; Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0 建立索引的时候,没有将范围写到最后面,查询速度慢 mysql> create index ddd on s1(id,name,gender,email); Query OK, 0 rows affected (16.29 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(*) from s1 where name='zzl' and gender='man' and id > 222 and email='dddd'; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (2.27 sec) 更改查询的位置,有些许的提升,但是提升不大 mysql> select count(*) from s1 where name='zzl' and gender='man' and email='dddd' and id>222; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (2.10 sec) 删除刚才的索引 mysql> drop index ddd on s1; Query OK, 0 rows affected (0.03 sec) Records: 0 Duplicates: 0 Warnings: 0 把查询范围的,放到最后 mysql> create index ddd on s1(name,gender,email,id); Query OK, 0 rows affected (17.44 sec) Records: 0 Duplicates: 0 Warnings: 0 查询速度显著提升 mysql> select count(*) from s1 where name='zzl' and gender='man' and email='dddd' and id>222; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.01 sec)
7.其他
- 使用函数 select * from s1 where reverse(email) = '123@wsdashi.com'; - 类型不一致 如果列是字符串类型,传入条件是必须用引号引起来,不然... select * from s1 where email = 999; #排序条件为索引,则select字段必须也是索引字段,否则无法命中 - order by select name from s1 order by email desc; 当根据索引排序时候,select查询的字段如果不是索引,则速度仍然很慢 select email from s1 order by email desc; 特别的:如果对主键排序,则还是速度很快: select * from s1 order by nid desc; - 组合索引最左前缀 如果组合索引为:(name,email) name and email -- 命中索引 name -- 命中索引 email -- 未命中索引 - count(1)或count(列)代替count(*)在mysql中没有差别了 - create index xxxx on tb(title(19)) #text类型,必须制定长度
二:其他注意的地方
1 避免使用select * 2 count(1)或count(列) 代替 count(*) 3 创建表时尽量时 char 代替 varchar 4 表的字段顺序固定长度的字段优先 5 组合索引代替多个单列索引(经常使用多个条件查询时) 6 尽量使用短索引 7 使用连接(JOIN)来代替子查询(Sub-Queries) 8 连表时注意条件类型需一致 9 索引散列值(重复少)不适合建索引,例:性别不适合
第五:详谈组合索引和覆盖索引
一:组合索引
组合索引时指对表上的多个列合起来做一个索引。组合索引的创建方法与单个索引的创建方法一样,不同之处在仅在于有多个索引列,如下
mysql> create table s2( -> a int, -> b int, -> primary key(a), -> key id_a_b(a,b) -> ); Query OK, 0 rows affected (0.04 sec)
那么何时需要使用组合索引呢?在讨论这个问题之前,先来看一下组合索引内部的结果。从本质上来说,组合索引就是一棵B+树,不同的是组合索引的键值得数量不是1,而是>=2。接着来讨论两个整型列组成的组合索引,假定两个键值得名称分别为a、b如图
可以看到这与我们之前看到的单个键的B+树并没有什么不同,键值都是排序的,通过叶子结点可以逻辑上顺序地读出所有数据,就上面的例子来说,即(1,1),(1,2),(2,1),(2,4),(3,1),(3,2),数据按(a,b)的顺序进行了存放。
因此,对于查询select * from table where a=xxx and b=xxx, 显然是可以使用(a,b) 这个联合索引的,对于单个列a的查询select * from table where a=xxx,也是可以使用(a,b)这个索引的。
但对于b列的查询select * from table where b=xxx,则不可以使用(a,b) 索引,其实你不难发现原因,叶子节点上b的值为1、2、1、4、1、2显然不是排序的,因此对于b列的查询使用不到(a,b) 索引
组合索引的第二个好处是在第一个键相同的情况下,已经对第二个键进行了排序处理,例如在很多情况下应用程序都需要查询某个用户的购物情况,并按照时间进行排序,最后取出最近三次的购买记录,这时使用组合索引可以帮我们避免多一次的排序操作,因为索引本身在叶子节点已经排序了,如下
准备数据表 mysql> create table buy_log( -> userid int unsigned not null, -> buy_date date -> ); Query OK, 0 rows affected (0.03 sec) mysql> mysql> insert into buy_log values -> (1,'2009-01-01'), -> (2,'2009-01-01'), -> (3,'2009-01-01'), -> (1,'2009-02-01'), -> (3,'2009-02-01'), -> (1,'2009-03-01'), -> (1,'2009-04-01'); Query OK, 7 rows affected (0.00 sec) Records: 7 Duplicates: 0 Warnings: 0 mysql> mysql> alter table buy_log add key(userid); Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> alter table buy_log add key(userid,buy_date); Query OK, 0 rows affected (0.03 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> show create table buy_log; +---------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Table | Create Table | +---------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | buy_log | CREATE TABLE `buy_log` ( `userid` int(10) unsigned NOT NULL, `buy_date` date DEFAULT NULL, KEY `userid` (`userid`), KEY `userid_2` (`userid`,`buy_date`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 | +---------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1 row in set (0.01 sec) 可以看到possible_keys在这里有两个索引可以用,分别是单个索引userid与联合索引userid_2,但是优化器最终选择了使用的key是userid因为该索引的叶子节点包含单个键值,所以理论上一个页能存放的记录应该更多 mysql> explain select * from buy_log where userid=2; +----+-------------+---------+------------+------+-----------------+--------+---------+-------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+-----------------+--------+---------+-------+------+----------+-------+ | 1 | SIMPLE | buy_log | NULL | ref | userid,userid_2 | userid | 4 | const | 1 | 100.00 | NULL | +----+-------------+---------+------------+------+-----------------+--------+---------+-------+------+----------+-------+ 1 row in set, 1 warning (0.01 sec) 假定要取出userid为1的最近3次的购买记录,用的就是联合索引userid_2了,因为在这个索引中,在userid=1的情况下,buy_date都已经排序好了 mysql> explain select * from buy_log where userid=1 order by buy_date desc limit 3; +----+-------------+---------+------------+------+-----------------+----------+---------+-------+------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+-----------------+----------+---------+-------+------+----------+--------------------------+ | 1 | SIMPLE | buy_log | NULL | ref | userid,userid_2 | userid_2 | 4 | const | 4 | 100.00 | Using where; Using index | +----+-------------+---------+------------+------+-----------------+----------+---------+-------+------+----------+--------------------------+ 1 row in set, 1 warning (0.00 sec)
二:覆盖索引
InnoDB存储引擎支持覆盖索引(covering index,或称索引覆盖),即从辅助索引中就可以得到查询记录,而不需要查询聚集索引中的记录。
使用覆盖索引的一个好处是:辅助索引不包含整行记录的所有信息,故其大小要远小于聚集索引,因此可以减少大量的IO操作
注意:覆盖索引技术最早是在InnoDB Plugin中完成并实现,这意味着对于InnoDB版本小于1.0的,或者MySQL数据库版本为5.0以下的,InnoDB存储引擎不支持覆盖索引特性
对于InnoDB存储引擎的辅助索引而言,由于其包含了主键信息,因此其叶子节点存放的数据为(primary key1,priamey key2,...,key1,key2,...)eg:
select age from s1 where id=123 and name = 'zzl'; #id字段有索引,但是name字段没有索引,该sql命中了索引,但未覆盖,需要去聚集索引中再查找详细信息。 重要的是:索引字段覆盖了所有,那全程通过索引来加速查询以及获取结果就ok了 mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | NO | | NULL | | | name | varchar(20) | YES | | NULL | | | gender | char(6) | YES | | NULL | | | email | varchar(50) | YES | | NULL | | +--------+-------------+------+-----+---------+-------+ rows in set (0.21 sec) mysql> explain select name from s1 where id=1000; #没有任何索引 +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+ | 1 | SIMPLE | s1 | NULL | ALL | NULL | NULL | NULL | NULL | 2688336 | 10.00 | Using where | +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+ row in set, 1 warning (0.00 sec) mysql> create index idx_id on s1(id); #创建索引 Query OK, 0 rows affected (4.16 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select name from s1 where id=1000; #命中辅助索引,但是未覆盖索引,还需要从聚集索引中查找name +----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+ | 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | NULL | +----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+ row in set, 1 warning (0.08 sec) mysql> explain select id from s1 where id=1000; #在辅助索引中就找到了全部信息,Using index代表覆盖索引 +----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+ | 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | Using index | +----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+ row in set, 1 warning (0.03 sec)
innodb存储引擎并不会选择通过查询聚集索引来进行统计。由于buy_log表有辅助索引,而辅助索引远小于聚集索引,选择辅助索引可以减少IO操作,故优化器的选择如上key为userid辅助索引
对于(a,b)形式的联合索引,一般是不可以选择b中所谓的查询条件。但如果是统计操作,并且是覆盖索引,则优化器还是会选择使用该索引,如下
#联合索引userid_2(userid,buy_date),一般情况,我们按照buy_date是无法使用该索引的,但特殊情况下:查询语句是统计操作,且是覆盖索引,则按照buy_date当做查询条件时,也可以使用该联合索引 mysql> explain select count(*) from buy_log where buy_date >= '2011-01-01' and buy_date < '2011-02-01'; +----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+ | 1 | SIMPLE | buy_log | index | NULL | userid_2 | 8 | NULL | 7 | Using where; Using index | +----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+ 1 row in set (0.00 sec)
第六:执行计划
详细的参考:https://dev.mysql.com/doc/refman/5.5/en/explain-output.html 执行计划:一般情况下是这样的 all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const id,email 慢: select * from userinfo3 where name='alex' explain select * from userinfo3 where name='alex' type: ALL(全表扫描) select * from userinfo3 limit 1; 快: select * from userinfo3 where email='alex' type: const(走索引)
第七:MySQL慢查询
一:慢查询优化的基本步骤
1.如果运行真的是非常的慢,需要设置SQL_NO_CACHE 2.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高 3.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询) 4.order by limit 形式的sql语句让排序的表优先查 5.了解业务方使用场景 6.加索引时参照建索引的几大原则 7.观察结果,不符合预期继续从0分析
二:慢日志管理
慢日志 - 执行时间 > 10 - 未命中索引 - 日志文件路径 配置: - 内存 show variables like '%query%'; show variables like '%queries%'; set global 变量名 = 值 - 配置文件 mysqld --defaults-file='E:xunyoumysql-5.7.16-winx64mysql-5.7.16-winx64my-default.ini' my.conf内容: slow_query_log = ON slow_query_log_file = D:/.... 注意:修改配置文件之后,需要重启服务
MySQL日志管理 ======================================================== 错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息 二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 以外的操作 查询日志: 记录查询的信息 慢查询日志: 记录执行时间超过指定时间的操作 中继日志: 备库将主库的二进制日志复制到自己的中继日志中,从而在本地进行重放 通用日志: 审计哪个账号、在哪个时段、做了哪些事件 事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等 ======================================================== 一、bin-log 1. 启用 # vim /etc/my.cnf [mysqld] log-bin[=dir[filename]] # service mysqld restart 2. 暂停 //仅当前会话 SET SQL_LOG_BIN=0; SET SQL_LOG_BIN=1; 3. 查看 查看全部: # mysqlbinlog mysql.000002 按时间: # mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" # mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54" # mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 按字节数: # mysqlbinlog mysql.000002 --start-position=260 # mysqlbinlog mysql.000002 --stop-position=260 # mysqlbinlog mysql.000002 --start-position=260 --stop-position=930 4. 截断bin-log(产生新的bin-log文件) a. 重启mysql服务器 b. # mysql -uroot -p123 -e 'flush logs' 5. 删除bin-log文件 # mysql -uroot -p123 -e 'reset master' 二、查询日志 启用通用查询日志 # vim /etc/my.cnf [mysqld] log[=dir[filename]] # service mysqld restart 三、慢查询日志 启用慢查询日志 # vim /etc/my.cnf [mysqld] log-slow-queries[=dir[filename]] long_query_time=n # service mysqld restart MySQL 5.6: slow-query-log=1 slow-query-log-file=slow.log long_query_time=3 查看慢查询日志 测试:BENCHMARK(count,expr) SELECT BENCHMARK(50000000,2*3);