zoukankan      html  css  js  c++  java
  • 【转】pthread_cleanup_push()/pthread_cleanup_pop()的详解

    一般来说,Posix的线程终止有两种情况:正常终止和非正常终止。线程主动调用pthread_exit()或者从线程函数中return都将使线程正 常退出,这是可预见的退出方式;非正常终止是线程在其他线程的干预下,或者由于自身运行出错(比如访问非法地址)而退出,这种退出方式是不可预见的。

    不论是可预见的线程终止还是异常终止,都会存在资源释放的问题,在不考虑因运行出错而退出的前提下,如何保证线程终止时能顺利的释放掉自己所占用的资源,特别是锁资源,就是一个必须考虑解决的问题。

    最经常出现的情形是资源独占锁的使用:线程为了访问临界资源而为其加上锁,但在访问过程中被外界取消,如果线程处于响应取消状态,且采用异步方式响 应,或者在打开独占锁以前的运行路径上存在取消点,则该临界资源将永远处于锁定状态得不到释放。外界取消操作是不可预见的,因此的确需要一个机制来简化用 于资源释放的编程。

    在POSIX线程API中提供了一个pthread_cleanup_push()/pthread_cleanup_pop()函数对用于自动释 放资源 --从pthread_cleanup_push()的调用点到pthread_cleanup_pop()之间的程序段中的终止动作(包括调用 pthread_exit()和取消点终止)都将执行pthread_cleanup_push()所指定的清理函数。API定义如下:

    void pthread_cleanup_push(void (*routine) (void  *),  void *arg)
    void pthread_cleanup_pop(int execute)

    pthread_cleanup_push()/pthread_cleanup_pop()采用先入后出的栈结构管理,void routine(void *arg)函数在调用pthread_cleanup_push()时压入清理函数栈,多次对pthread_cleanup_push()的调用将在清 理函数栈中形成一个函数链,在执行该函数链时按照压栈的相反顺序弹出。execute参数表示执行到pthread_cleanup_pop()时是否在 弹出清理函数的同时执行该函数,为0表示不执行,非0为执行;这个参数并不影响异常终止时清理函数的执行。

    pthread_cleanup_push()/pthread_cleanup_pop()是以宏方式实现的,这是pthread.h中的宏定义:

    #define pthread_cleanup_push(routine,arg)                                     
    { struct _pthread_cleanup_buffer _buffer;
    _pthread_cleanup_push (&_buffer, (routine), (arg));
    #define pthread_cleanup_pop(execute)
    _pthread_cleanup_pop (&_buffer, (execute)); }
    可见,pthread_cleanup_push()带有一个"{",而pthread_cleanup_pop()带有一个"}",因此这两个函数必须成对出现,且必须位于程序的同一级别的代码段中才能通过编译。在下面的例子里,当线程在"do some work"中终止时,将主动调用pthread_mutex_unlock(mut),以完成解锁动作。
    work"中终止时,将主动调用pthread_mutex_unlock(mut),以完成解锁动作。
    pthread_cleanup_push(pthread_mutex_unlock, (void *) &mut);
    pthread_mutex_lock(&mut);
    /* do some work */
    pthread_mutex_unlock(&mut);
    pthread_cleanup_pop(0);
    必须要注意的是,如果线程处于PTHREAD_CANCEL_ASYNCHRONOUS状态,上述代码段就有可能出错,因为CANCEL事件有可能在
    pthread_cleanup_push()和pthread_mutex_lock()之间发生,或者在pthread_mutex_unlock()和pthread_cleanup_pop()之间发生,从而导致清理函数unlock一个并没有加锁的
    mutex变量,造成错误。因此,在使用清理函数的时候,都应该暂时设置成PTHREAD_CANCEL_DEFERRED模式。为此,POSIX的
    Linux实现中还提供了一对不保证可移植的pthread_cleanup_push_defer_np()/pthread_cleanup_pop_defer_np()扩展函数,功能与以下
    代码段相当:
    { int oldtype;
    pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype);
    pthread_cleanup_push(routine, arg);
    ...
    pthread_cleanup_pop(execute);
    pthread_setcanceltype(oldtype, NULL);
    }

    上面我用红色标记的部分是这两个函数的关键作用,我的理解就是:
    pthread_cleanup_push(pthread_mutex_unlock, (void *) &mut);
    pthread_mutex_lock(&mut);
    /* do some work */
    pthread_mutex_unlock(&mut);
    pthread_cleanup_pop(0);
    本来do some work之后是有pthread_mutex_unlock(&mut);这句,也就是有解锁操作
    ,但是在do some work时会出现非正常终止,那样的话,系统会根据pthread_cleanup_push中提供的函数,和参数进行解锁操作或者其他操作,以免造成死锁!
  • 相关阅读:
    教练技术的小应用
    “货品未动,数据先行”,德邦快递与网易云联合打造“智能物流”
    小论数据分析的方法及思维
    网易蜂巢(云计算基础服务)MongoDB服务重磅来袭
    pdfjs viewer 开发小结
    wap html5播放器和直播开发小结
    MongoDB之我是怎么成为Primary节点的
    MongoDB中WiredTiger的数据可用性设置
    AutoMapper 自动映射工具
    linq 左连接实现两个集合的合并
  • 原文地址:https://www.cnblogs.com/ymy124/p/2346558.html
Copyright © 2011-2022 走看看