传送门
昨天花了好久好像是看懂了,那今天早上尝试自己推一遍柿子 顺便水了一篇博客
(f {Description})
求$$sum_{i=1}^n sum_{i=1}^mvarphi(ij)$$
(1 leq n leq 10^5 , 1 leq m leq 10^9),模 (10^9+7)
(f Solution)
先给个结论,当 (|mu(n)|=1) 时,有
[varphi(ni)=varphi(i) sum_{d|(n,i)}varphi(frac{n}{d})
]
简单证明一下(想了一节晚自习才想通呢QAQ)
(gcd的表示有点乱,不要在意)
[varphi(ni)=varphi(n) cdot varphi(frac{i}{gcd(n,i)}) cdot gcd(n,i)
]
[=varphi(i) cdot varphi(frac{n}{gcd(n,i)}) cdot gcd(n,i)
]
[=varphi(i) cdot varphi(frac{n}{gcd(n,i)}) cdot sum_{d|(n,i)}varphi(d)
]
[=varphi(i) cdot varphi(frac{n}{gcd(n,i)}) cdot sum_{d|(n,i)}varphi(frac{gcd(n,i)}{d})
]
[=varphi(i) sum_{d|(n,i)}varphi(frac{n}{d})
]
推的时候要注意 (n) 的性质,还要熟悉 (varphi),不然就推不粗来QAQ
然后令 (S(n,m)=sum_{i=1}^m varphi(ni)),令 (P) 为 (n) 所有质因子的乘积,(Q=dfrac{n}{P}),然后可得
[S(n,m)=Q cdot sum_{i=1}^m varphi(i) sum_{d|(P,i)} varphi(frac{P}{d})
]
先枚举因数,得到
[S(n,m)=Q cdot sum_{d|P}varphi(frac{P}{d}) sum_{i=1}^{lfloor frac{m}{d}
floor} varphi(di)
]
[=Q cdot sum_{d|P} varphi(frac{P}{d}) S(d,left lfloor frac{m}{d}
ight
floor)
]
然后就阔以记忆化啦?
当 (n=1) 的时候就是 (varphi) 的前缀和,杜教筛板子啦?
复杂度玄学?不会证啦。
代码?还没写出来啦。
写出来再贴吧。
写出来啦,十分暴力QAQ
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
#include<bits/stdc++.h>
#include<tr1/unordered_map>
#define LL long long
#define re register
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
using namespace tr1;
const int N=2000002;
const int INF=2147483647;
const int p=1e9+7;
int n,m;
void read(int &x){ scanf("%d",&x); }
void Add(int &x,int y){
x+=y;
while(x<0) x+=p;
while(x>=p) x-=p;
}
int phi[N];
int pri[N/10],b[N],L;
void init(){
phi[1]=1;
frl(i,2,N){
if (!b[i]) pri[++L]=i,phi[i]=i-1;
for(int j=1;j<=L&&i*pri[j]<N;j++){
b[i*pri[j]]=1;
if (i%pri[j]==0){
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
frl(i,2,N) Add(phi[i],phi[i-1]);
}
map<int,int> s,mp[N];
int S(int n,int m){
//cout<<n<<' '<<m<<endl;
if (n==0||m==0) return 0;
if (n==1){
if (m<N) return phi[m];
if (s.count(m)) return s[m];
int ans=(1LL*m*(m+1)/2)%p;
for(re int L=2,r=2;L<=m;L=r+1)
r=m/(m/L),Add(ans,-1LL*S(n,m/L)*(r-L+1)%p);
return s[m]=ans;
}
if (mp[n].count(m)) return mp[n][m];
int ans=0;
for(re int i=1;i*i<=n;i++)
if (n%i==0){
Add(ans,1LL*(phi[n/i]-phi[n/i-1])*S(i,m/i)%p);
if (n/i!=i) Add(ans,1LL*(phi[i]-phi[i-1])*S(n/i,m/(n/i))%p);
}
return mp[n][m]=ans;
}
int main(){
//freopen("1.in","r",stdin);
init();
read(n);read(m);
int ans=0;
fr(xx,1,n){
int s=1,x=xx;
for(int i=2;i*i<=x;i++)
if (x%i==0){
s*=i;
while(x%i==0) x/=i;
}
s*=x;
Add(ans,1LL*S(s,m)*(xx/s)%p);
//cout<<S(s,m)*(xx/s)<<endl;
}
cout<<ans<<endl;
//cout<<S(s,m)<<endl;
//printf("%lld
",1LL*S(s,m)*(n/s)%p);
return 0;
}