给出m个数, 求1-n的范围内, 无法整除这m个数之中任何一个数的数的个数。
设m个数为a[i], 对任意的i, n/a[i]是n中可以整除a[i]的数的个数, 但是这样对于有些数重复计算了, 那么就需要减去一些数, 对任意两个数, 设x为这两个数的lcm, 那么需要减去n/lcm,然后加上任意三个数的n/lcm....... 就这样类推。
#include <iostream> #include <vector> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <map> #include <set> #include <string> #include <queue> #include <stack> #include <bitset> using namespace std; #define pb(x) push_back(x) #define ll long long #define mk(x, y) make_pair(x, y) #define lson l, m, rt<<1 #define mem(a) memset(a, 0, sizeof(a)) #define rson m+1, r, rt<<1|1 #define mem1(a) memset(a, -1, sizeof(a)) #define mem2(a) memset(a, 0x3f, sizeof(a)) #define rep(i, n, a) for(int i = a; i<n; i++) #define fi first #define se second typedef pair<int, int> pll; const double PI = acos(-1.0); const double eps = 1e-8; const int mod = 1e9+7; const int inf = 1061109567; const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} }; int a[20]; ll gcd(ll x, ll y) { return y==0?x:gcd(y, x%y); } ll lcm(ll x, ll y) { return x/gcd(x, y)*y; } int main() { int n, m; while(cin>>n>>m) { for(int i = 0; i<m; i++) scanf("%d", &a[i]); ll ans = 0; for(int i = 1; i<(1<<m); i++) { ll cnt = 0, mul = 1; for(int j = 0; j<m; j++) { if((1<<j)&i) { mul = lcm(mul, 1LL*a[j]); cnt++; } } if(cnt&1) { ans += n/mul; } else { ans -= n/mul; } } cout<<n-ans<<endl; } return 0; }