zoukankan      html  css  js  c++  java
  • hdu 4704 Sum 费马小定理

    题目链接

    求2^n%mod的值, n<=10^100000。

    费马小定理 如果a, p 互质, 那么a^(p-1) = 1(mod p)  然后可以推出来a^k % p = a^(k%(p-1))%p。

    #include <iostream>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <map>
    #include <set>
    #include <string>
    #include <queue>
    #include <stack>
    #include <bitset>
    using namespace std;
    #define pb(x) push_back(x)
    #define ll long long
    #define mk(x, y) make_pair(x, y)
    #define lson l, m, rt<<1
    #define mem(a) memset(a, 0, sizeof(a))
    #define rson m+1, r, rt<<1|1
    #define mem1(a) memset(a, -1, sizeof(a))
    #define mem2(a) memset(a, 0x3f, sizeof(a))
    #define rep(i, n, a) for(int i = a; i<n; i++)
    #define fi first
    #define se second
    typedef pair<int, int> pll;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int mod = 1e9+7;
    const int inf = 1061109567;
    const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
    ll pow(ll a, ll b) {
        ll ret = 1;
        while(b) {
            if(b&1)
                ret = ret*a%mod;
            a = a*a%mod;
            b>>=1;
        }
        return ret;
    }
    int main()
    {
        string s;
        while(cin>>s) {
            int len = s.size();
            ll num = 0;
            for(int i = 0; i<len; i++) {
                num = (num*10+s[i]-'0')%(mod-1);
            }
            num--;
            num = (num+mod-1)%(mod-1);
            ll ans = pow(2LL, num)%mod;
            cout<<ans<<endl;
        }
        return 0;
    }
  • 相关阅读:
    CSS学习笔记
    metadata的深入
    [极客大挑战 2019]BabySQL
    [极客大挑战 2019]LoveSQL
    [强网杯 2019]随便注
    [SUCTF 2019]CheckIn 1
    [ZJCTF 2019]NiZhuanSiWei 1
    [BJDCTF2020]Easy MD5
    [极客大挑战 2019]BuyFlag
    [ACTF2020 新生赛]BackupFile
  • 原文地址:https://www.cnblogs.com/yohaha/p/5215077.html
Copyright © 2011-2022 走看看