AMM Problems
某个月黑风高的下午,Yoshinow2001打开了一个积分题(见Problem12221),他发现他不会做,但是有论文,花了一个晚上终于搞懂了整个过程,写完这题的他不禁感叹数学的奇妙(//̀Д/́/),里面许多方法其实并不陌生,以及想稍微整理一下整个题,于是就有了这篇blog。
如果不咕咕咕的话,之后这里应该会持续更新一些American Mathematical Monthly(AMM:https://www.mat.uniroma2.it/~tauraso/AMM/amm.html)上的题目解答的整理,微积分和无穷级数应该占主要部分。
Problem 12221
这题是要我们证:(egin{aligned}int_0 ^1 frac{ln(x^6+1)}{x^2+1}dx=frac{pi}{2}ln(6)-3Gend{aligned}),这里(G)是卡特兰常数(egin{aligned}G=sum_{k=0}^infin frac{(-1)^k}{(2k+1)^2}end{aligned})。
(证明来自于Roberto Tauraso)
首先依然是倒代换,令(egin{aligned}t=frac{1}{x},dt=-frac{1}{x^2}dx=-t^2 dxend{aligned})就会有(egin{aligned}I&=int _0^1 frac{ln(x^6+1)}{x^2+1}dx=int_infin ^1 frac{ln(x^6+1)-6ln x}{frac{x^2+1}{x^2}}(-frac{1}{x^2} dx)\&=int _1^infin frac{ln(x^6+1)}{x^2+1}dx-6int_1^infin frac{ln x}{x^2+1} dx end{aligned})
接着分别取第一行和第二行的式子,就得到了
(egin{aligned}2I=int_0 ^infin frac{ln(x^6+1)}{x^2+1} dx-6int _1 ^infin frac{ln x}{x^2+1}dxend{aligned}. ag{1})
不妨记(egin{aligned}I_1=int_0 ^infin frac{ln(x^6+1)}{x^2+1}dxend{aligned}),(egin{aligned}I_2=int_1 ^infin frac{ln x}{x^2+1}dxend{aligned})。
(egin{aligned}I=frac{1}{2}I_1-3I_2end{aligned}. ag{2})
我查阅了一下相关资料,后面那个积分(不妨记为(egin{aligned}I_1end{aligned}))就是卡特兰常数的一个常见的应用:
依然做倒代换:
(egin{aligned}int _1^infin frac{ln x}{x^2+1}dx=int _1 ^0 frac{-ln x}{frac{x^2+1}{x^2}}(-frac{1}{x^2}dx)=-int_0^1 frac{ln x}{x^2+1}dxend{aligned}),然后是利用(egin{aligned}frac{1}{x^2+1}dx=d(arctan x)end{aligned})就得到,(egin{aligned}I_2&=-int_0^1 ln (x) d(arctan x)=-arctan(x)ln(x)|_0^1+int_0^1 frac{arctan x}{x}dx=int_0^1 frac{arctan(x)}{x}dx\&=int_0^1 frac{1}{x}Big(int_0^x frac{dt}{t^2+1}Big) dx=int_0^1 frac{1}{x}[int_0^x sum_{n=0}^infin (-t^2)^n dt]dx=int_0^1frac{1}{x}[sum_{n=0}^infin (-1)^{n} frac{x^{2n+1}}{2n+1}]dx\&=sum_{n=0}^infin frac{(-1)^n}{2n+1} int_0^1 x^{2n} dx=sum_{n=0}^infin frac{(-1)n}{(2n+1)^2}=G.end{aligned})
这里其实就是在做凑微分、倒代换以及一个arctan x的泰勒展开式子,就得到了卡特兰常数相关的一串恒等式:
(egin{aligned}G=int_0^1 frac{arctan x}{x} dx=int _1^infin frac{ln x}{x^2+1} dx=-int_0^1 frac{ln x}{x^2+1} dxend{aligned}. ag{3})
好了处理完后面这个(还算好处理的)东西,再回过头来处理前面的广义积分(I_1),代数基本定理的一个推论说,每个实系数多项式必定可以分解成一些一次因式,以及实系数不可约的二次因式的乘积,这里刚好又在对数里出现了高次多项式,于是就考虑先给(x^6+1)做因式分解:
(egin{aligned}x^6+1&=(x^2)^3+1=(x^2+1)(x^4-x^2+1)=(x^2+1)(x^4+2x^2+1-3x^2)\&=(x^2+1)[(x^2+1)^2-(sqrt 3 x)^2]=(x^2+1)(x^2+sqrt 3 x+1)(x^2-sqrt3 x+1).end{aligned})
后面作者就开始算一个震惊我一下午的东西,他直接去考虑如何计算(egin{aligned}J(a)=int_0 ^infin frac{ln(x^2+ax+1)}{x^2+1}dxend{aligned}.)
做起来依然是用反正切处理分母:
(egin{aligned}J(a)&=int_0 ^infin ln(x^2+ax+1)d(arctan x)xlongequal[x= an t]{t=arctan x}int_0^{pi/2} ln(frac{1}{cos ^2 x}+afrac{sin x}{cos x}) dx\&=int_0 ^{pi/2} ln(1+frac{a}{2}sin 2x)dx-2int_{0}^{pi/2} ln(cos x) dxend{aligned})
对于后面的部分,记为(I_3=int_0 ^{pi/2} ln(cos x) dx),利用正余弦的对称性有(I_3=int_0^{pi/2} ln(sin x)dx),于是(egin{aligned}I_3&=frac{1}{2}int_0^{pi/2} ln(frac{sin(2x)}{2})dx=frac{1}{2}cdot 2cdotint_0^{pi/4} ln(sin(2x))dx-frac{1}{2}cdot frac{pi}{2}cdot ln2\&=frac{1}{2}int_0^{pi/4} ln(sin(2x))d(2x)-frac{pi}{4}ln 2=frac{1}{2}I_3-frac{pi}{4}ln2.end{aligned} ag{4})
于是要求的(egin{aligned}I_3=-frac{pi}{2}ln 2end{aligned}.)
前面一块也可以化成(2egin{aligned}int_0^{pi/4} ln(1+frac{a}{2}sin(2x))frac{1}{2}d(2x)=int_0^{pi/2} ln(1+frac{a}{2}sin x)dx.end{aligned})
代回去:
(egin{aligned}J(a)=int_0^{pi/2} ln(1+frac{a}{2}sin x)dx+piln2end{aligned}),接着又是一个震惊一下午的操作:
(egin{aligned}J(a)+J(-a)=int_0^{pi/2} ln(1-frac{a^2}{4}sin^2 x)+2pi ln2end{aligned}.)
为了方便还是把前面的积分写成(A),泰勒展开成关于(sin ^2 x)的幂级数,然后交换次序,再用Wallis公式展开:
(egin{aligned}A&=-int_0^{pi/2}[sum_{n=1}^infin(frac{a^2}{4})^n frac{1}{n}sin^{2n} x ]dx=-frac{pi}{2}sum_{n=1}^infin (frac{a^2}{4})^n frac{1}{n}frac{(2n-1)!!}{(2n)!!}.end{aligned} ag{5})
接着用到广义二项式定理的一个情形:
(egin{aligned}frac{1}{sqrt{1+x}}=1+sum_{n=1}^infin (-1)^n frac{(2n-1)!!}{(2n)!!} x^nend{aligned}. ag{6})
( ag{5}) 式里则考虑怎么处理掉(frac{1}{n}),依然是凑成积分:
(egin{aligned}A&=-frac{pi}{2}sum_{n=1}^infin frac{(2n-1)!!}{4^n(2n)!!} cdot 2cdot int_0 ^a x^{2n-1} dx=-piint_0^a frac{1}{x}sum_{n=1}^infin frac{(2n-1)!!}{(2n)!!}(frac{x^2}{4})^n dx\&=-piint_0^a frac{1}{x}(frac{1}{sqrt{1-frac{x^2}{4}}}-1) dx=-piint_0^a frac{1}{x} frac{2-sqrt{4-x^2}}{sqrt{4-x^2}}dx=-piint_0^a frac{1}{x} frac{x^2}{sqrt{4-x^2}(2+sqrt{4-x^2})}\&=-piint_0^a frac{x}{sqrt{4-x^2}(2+sqrt{4-x^2})}dx=piint_0^afrac{d(2+sqrt{4-x^2})}{2+sqrt{4-x^2}}\&=piBig(ln|2+sqrt{4-a^2}|-ln 4Big)=piln frac{1+sqrt{1-frac{a^2}{4}}}{2}.end{aligned})
于是几番波折终于得到了:
(egin{aligned}J(a)+J(-a)=piln frac{1+sqrt{1-frac{a^2}{4}}}{2}+2pi ln 2end{aligned} ag{7})
now we back to…最开始的要求的那一个:
(egin{aligned}end{aligned})(egin{aligned}I=frac{1}{2}I_1-3G=frac{1}{2}[J(0)+J(sqrt 3)+J(-sqrt 3)]-3Gend{aligned}.)
(egin{aligned}J(0)=pi ln 2end{aligned}),以及(egin{aligned}J(sqrt 3)+J(-sqrt 3)=piln frac{3}{4}+2pi ln 2end{aligned}.)
就得到了(egin{aligned}I=frac{pi}{2}[ln(frac{3}{4} imes 8)]-3G=frac{pi}{2}ln6-3Gend{aligned}.)
(Q.E.D.)