题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=119
解题思路:
RMQ算法。
不会的可以去看看我总结的RMQ算法。
http://blog.csdn.net/niushuai666/article/details/6624672
代码如下:
#include<cstdio> #include<algorithm> #include<cmath> using namespace std; const int N = 100010; int maxsum[N][20], minsum[N][20]; void RMQ(int num) //预处理->O(nlogn) { for(int j = 1; j < 20; ++j) for(int i = 1; i <= num; ++i) if(i + (1 << j) - 1 <= num) { maxsum[i][j] = max(maxsum[i][j - 1], maxsum[i + (1 << (j - 1))][j - 1]); minsum[i][j] = min(minsum[i][j - 1], minsum[i + (1 << (j - 1))][j - 1]); } } int main() { int num, query; int src, des; scanf("%d %d", &num, &query); for(int i = 1; i <= num; ++i) //输入信息处理 { scanf("%d", &maxsum[i][0]); minsum[i][0] = maxsum[i][0]; } RMQ(num); while(query--) //O(1)查询 { scanf("%d %d", &src, &des); int k = (int)(log(des - src + 1.0) / log(2.0)); int maxres = max(maxsum[src][k], maxsum[des - (1 << k) + 1][k]); int minres = min(minsum[src][k], minsum[des - (1 << k) + 1][k]); printf("%d ", maxres - minres); } return 0; }
代码优化后:
#include<cstdio> #include<algorithm> #include<cmath> using namespace std; const int N = 100010; int maxsum[20][N], minsum[20][N]; //优化1 void RMQ(int num) //预处理->O(nlogn) { for(int i = 1; i != 20; ++i) for(int j = 1; j <= num; ++j) if(j + (1 << i) - 1 <= num) { maxsum[i][j] = max(maxsum[i - 1][j], maxsum[i - 1][j + (1 << i >> 1)]); //优化2 minsum[i][j] = min(minsum[i - 1][j], minsum[i - 1][j + (1 << i >> 1)]); } } int main() { int num, query; int src, des; scanf("%d %d", &num, &query); for(int i = 1; i <= num; ++i) //输入信息处理 { scanf("%d", &maxsum[0][i]); minsum[0][i] = maxsum[0][i]; } RMQ(num); while(query--) //O(1)查询 { scanf("%d %d", &src, &des); int k = (int)(log(des - src + 1.0) / log(2.0)); int maxres = max(maxsum[k][src], maxsum[k][des - (1 << k) + 1]); int minres = min(minsum[k][src], minsum[k][des - (1 << k) + 1]); printf("%d ", maxres - minres); } return 0; }
优化1:数组由F[N][20]变为F[20][N];
因为数组的地址为a + i + j,对应上面数组,我们需要先循环N的部分,所以
如果是第一种,我们计算时因为i不断变化,我们就需要计算a + i + j
如果是第二种,我们计算时a + i不变,只需要改变j
优化2:
位运算
转载至:http://blog.csdn.net/niushuai666/article/details/7400587
自己也放心不下ST算法