zoukankan      html  css  js  c++  java
  • 查看TensorFlow的版本以及安装路径

    查看TensorFlow的版本以及安装路径

    进入到Python环境

    import tensorflow as tf
    tf.__version__   # 查看版本
    tf.__path__	     # 查看安装路径
    

    查看TensorFlow版本的另一种方法

    sudo pip3 show tensorflow-gpu   # GPU版
    sudo pip3 show tensorflow       # 非GPU版
    

    查看TensorFlow版本的另一种方法

    $ python
    Python 3.6.7 (default, Oct 22 2018, 11:32:17) 
    [GCC 8.2.0] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> from tensorflow.python.client import device_lib
    >>> device_lib.list_local_devices()
    

    输出

    2019-05-18 21:36:53.492143: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
    2019-05-18 21:36:53.606863: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:898] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2019-05-18 21:36:53.607366: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 0 with properties: 
    name: GeForce MX150 major: 6 minor: 1 memoryClockRate(GHz): 1.341
    pciBusID: 0000:01:00.0
    totalMemory: 1.96GiB freeMemory: 1.27GiB
    2019-05-18 21:36:53.607382: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0
    2019-05-18 21:36:53.826350: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
    2019-05-18 21:36:53.826381: I tensorflow/core/common_runtime/gpu/gpu_device.cc:929]      0 
    2019-05-18 21:36:53.826388: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0:   N 
    2019-05-18 21:36:53.826499: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/device:GPU:0 with 1017 MB memory) -> physical GPU (device: 0, name: GeForce MX150, pci bus id: 0000:01:00.0, compute capability: 6.1)
    [name: "/device:CPU:0"
    device_type: "CPU"
    memory_limit: 268435456
    locality {
    }
    incarnation: 1057080042639158477
    , name: "/device:GPU:0"
    device_type: "GPU"
    memory_limit: 1067384832
    locality {
      bus_id: 1
      links {
      }
    }
    incarnation: 9801033547599324942
    physical_device_desc: "device: 0, name: GeForce MX150, pci bus id: 0000:01:00.0, compute capability: 6.1"
    ]
    

    另一种方法

    查看tensorflow-gpu的版本:

    pip list

  • 相关阅读:
    CSP-S2019游记
    小程序回馈模块,测试陷入泥沼
    送测质量烂的一匹,还要不要继续测试?
    day1 执行用例
    写了人生中第一个完整模块的用例
    项目测试中发现产品bug怎么办
    项目测试操作规范
    idea连接mysql
    自动化环境配置
    linux,无法进行写操作怎么办?read-only file system
  • 原文地址:https://www.cnblogs.com/youpeng/p/10887354.html
Copyright © 2011-2022 走看看