题目
Z 国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各界的赞扬。
最近发生了一件可怕的事情,邪恶的 Y 国发动了一场针对 Z 国的侵略战争。战火绵延五百里,在和平环境中安逸了数百年的 Z 国又怎能抵挡的住 Y 国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一个真龙天子的降生,带领正义打败邪恶。
骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出征的。
战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的情况),并且,使得这支骑士军团最具有战斗力。
为了描述战斗力,我们将骑士按照 (1) 至 (n) 编号,给每名骑士一个战斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。
输入格式
第一行包含一个整数 (n),描述骑士团的人数。
接下来 (n) 行,每行两个整数,按顺序描述每一名骑士的战斗力和他最痛恨的骑士。
输出格式
应输出一行,包含一个整数,表示你所选出的骑士军团的战斗力。
输入样例
3
10 2
20 3
30 1
输出样例
30
题解
把每个骑士连接起来,形成一个图,如果A恨B,A不能和B在一起,B自然也就无法和A在一起,即使B不恨A,所以建图的时候建双向边.
然后就是树形DP
定义(f[i][j]),(f[i][0])表示以点(i)为根的子树中,不选择根时的最大战斗力,(f[i][1])表示以点(i)为根的子树中,选择根时的最大战斗力.
设(u)为树根,(v)为(u)的每个儿子,(a[i])表示点(i)的战斗力
显然,
(f[u][1]=Sigma f[v][0]+a[u])
(f[u][0]=Sigma f[v][1])
但是,注意本题可能出现环,并且最多只能出现一个环
这时候随便从中间拆开,变成一条链,端点设为(r1,r2),然后以(r1)为根进行一次树形DP,不选(r1)(因为(r,r2)不能同时选),得到的值是(f[r1][0]);然后相同操作,对(r2)也进行一次,得到的值记为(f[r2][0]),然后把每一次树形DP的值的和就是答案.
代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1000000 + 10;
int head[N], cnt = 1, size[N], r1, r2,p[N];
struct Edge { int to, next; } edges[2 * N];
bool vis[N], flag;
long long ans, f[N][2];
void add(int x, int y) {
edges[++cnt].next = head[x];
edges[cnt].to = y;
head[x] = cnt;
}
void dfs(int x, int fa) {
vis[x] = 1;
size[++size[0]] = x;
for (int i = head[x]; i; i = edges[i].next) {
int v = edges[i].to;
if (v == fa) continue;
if (!vis[v]) dfs(v, x);
else if (vis[v] && !flag) {
flag = true;
r1 = x, r2 = v;
}
}
}
void dfs2(int x, int fa) {
f[x][0] = 0;
f[x][1] = p[x];
for (int i = head[x]; i; i = edges[i].next) {
int v = edges[i].to;
if (v && v != fa) {
dfs2(v, x);
f[x][1] += f[v][0];
f[x][0] += max(f[v][0], f[v][1]);
}
}
}
void solve() {
if (!flag) {
int root = size[1];
dfs2(root, -1);
ans += max(f[root][0], f[root][1]);
} else {
long long maxv = -100;
for (int i = head[r1]; i; i = edges[i].next) {
if (edges[i].to == r2) {
edges[i].to = 0;
edges[i ^ 1].to = 0;
break;
}
}
dfs2(r1, -1);
maxv = max(maxv, f[r1][0]);
dfs2(r2, -1);
maxv = max(maxv, f[r2][0]);
ans += maxv;
}
}
int n;
int main() {
scanf("%d", &n);
int x, y;
for (int i = 1; i <= n; i++) scanf("%d%d", &p[i], &x), add(i, x), add(x, i);
for (int i = 1; i <= n; i++) {
if (!vis[i]) {
size[0] = 0;
flag = false;
dfs(i, -1);
solve();
}
}
printf("%lld", ans);
return 0;
}