设计了两个隐藏层,激活函数是tanh,使用Adam优化算法,学习率随着epoch的增大而调低
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小 batch_size = 32 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两个placeholder x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) keep_prob=tf.placeholder(tf.float32) lr = tf.Variable(0.001, dtype=tf.float32) #创建一个简单的神经网络 W1 = tf.Variable(tf.truncated_normal([784,500],stddev=0.1)) b1 = tf.Variable(tf.zeros([500])+0.1) L1 = tf.nn.tanh(tf.matmul(x,W1)+b1) L1_drop = tf.nn.dropout(L1,keep_prob) W2 = tf.Variable(tf.truncated_normal([500,300],stddev=0.1)) b2 = tf.Variable(tf.zeros([300])+0.1) L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2) L2_drop = tf.nn.dropout(L2,keep_prob) W3 = tf.Variable(tf.truncated_normal([300,10],stddev=0.1)) b3 = tf.Variable(tf.zeros([10])+0.1) prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3) #交叉熵代价函数 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #训练 train_step = tf.train.AdamOptimizer(lr).minimize(loss) #初始化变量 init = tf.global_variables_initializer() #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(init) for epoch in range(51): sess.run(tf.assign(lr, 0.001 * (0.95 ** epoch))) for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) learning_rate = sess.run(lr) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) print ("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc) + ", Learning Rate= " + str(learning_rate))
#
Iter 0, Testing Accuracy= 0.954, Learning Rate= 0.001 Iter 1, Testing Accuracy= 0.9624, Learning Rate= 0.00095 Iter 2, Testing Accuracy= 0.9668, Learning Rate= 0.0009025 Iter 3, Testing Accuracy= 0.9665, Learning Rate= 0.000857375 Iter 4, Testing Accuracy= 0.9725, Learning Rate= 0.00081450626 Iter 5, Testing Accuracy= 0.9738, Learning Rate= 0.0007737809 Iter 6, Testing Accuracy= 0.9769, Learning Rate= 0.0007350919 Iter 7, Testing Accuracy= 0.9771, Learning Rate= 0.0006983373 Iter 8, Testing Accuracy= 0.9777, Learning Rate= 0.0006634204 Iter 9, Testing Accuracy= 0.9764, Learning Rate= 0.0006302494 Iter 10, Testing Accuracy= 0.9753, Learning Rate= 0.0005987369 Iter 11, Testing Accuracy= 0.9779, Learning Rate= 0.0005688001 Iter 12, Testing Accuracy= 0.9777, Learning Rate= 0.0005403601 Iter 13, Testing Accuracy= 0.9774, Learning Rate= 0.0005133421 Iter 14, Testing Accuracy= 0.9772, Learning Rate= 0.000487675 Iter 15, Testing Accuracy= 0.9803, Learning Rate= 0.00046329122 Iter 16, Testing Accuracy= 0.9802, Learning Rate= 0.00044012666 Iter 17, Testing Accuracy= 0.9791, Learning Rate= 0.00041812033 Iter 18, Testing Accuracy= 0.9806, Learning Rate= 0.00039721432 Iter 19, Testing Accuracy= 0.9803, Learning Rate= 0.0003773536 Iter 20, Testing Accuracy= 0.9796, Learning Rate= 0.00035848594 Iter 21, Testing Accuracy= 0.9803, Learning Rate= 0.00034056162 Iter 22, Testing Accuracy= 0.9788, Learning Rate= 0.00032353355 Iter 23, Testing Accuracy= 0.9819, Learning Rate= 0.00030735688 Iter 24, Testing Accuracy= 0.975, Learning Rate= 0.000291989 Iter 25, Testing Accuracy= 0.9808, Learning Rate= 0.00027738957 Iter 26, Testing Accuracy= 0.9814, Learning Rate= 0.0002635201 Iter 27, Testing Accuracy= 0.9802, Learning Rate= 0.00025034408 Iter 28, Testing Accuracy= 0.9809, Learning Rate= 0.00023782688 Iter 29, Testing Accuracy= 0.9811, Learning Rate= 0.00022593554 Iter 30, Testing Accuracy= 0.9816, Learning Rate= 0.00021463877 Iter 31, Testing Accuracy= 0.9812, Learning Rate= 0.00020390682 Iter 32, Testing Accuracy= 0.9815, Learning Rate= 0.00019371149 Iter 33, Testing Accuracy= 0.9815, Learning Rate= 0.0001840259 Iter 34, Testing Accuracy= 0.9813, Learning Rate= 0.00017482461 Iter 35, Testing Accuracy= 0.981, Learning Rate= 0.00016608338 Iter 36, Testing Accuracy= 0.9806, Learning Rate= 0.00015777921 Iter 37, Testing Accuracy= 0.9818, Learning Rate= 0.00014989026 Iter 38, Testing Accuracy= 0.982, Learning Rate= 0.00014239574 Iter 39, Testing Accuracy= 0.9813, Learning Rate= 0.00013527596 Iter 40, Testing Accuracy= 0.9818, Learning Rate= 0.00012851215 Iter 41, Testing Accuracy= 0.9827, Learning Rate= 0.00012208655 Iter 42, Testing Accuracy= 0.9826, Learning Rate= 0.00011598222 Iter 43, Testing Accuracy= 0.9814, Learning Rate= 0.00011018311 Iter 44, Testing Accuracy= 0.9823, Learning Rate= 0.000104673956 Iter 45, Testing Accuracy= 0.9828, Learning Rate= 9.944026e-05 Iter 46, Testing Accuracy= 0.9824, Learning Rate= 9.446825e-05 Iter 47, Testing Accuracy= 0.9824, Learning Rate= 8.974483e-05 Iter 48, Testing Accuracy= 0.983, Learning Rate= 8.525759e-05 Iter 49, Testing Accuracy= 0.9827, Learning Rate= 8.099471e-05 Iter 50, Testing Accuracy= 0.9828, Learning Rate= 7.6944976e-05
最终达到了0.9828的准确率