zoukankan      html  css  js  c++  java
  • LSTM用于MNIST手写数字图片分类

    按照惯例,先放代码:

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
    
    # 输入图片是28*28
    n_inputs = 28 #输入一行,一行有28个数据
    max_time = 28 #一共28行
    lstm_size = 100 #隐层单元
    n_classes = 10 # 10个分类
    batch_size = 50 #每批次50个样本
    n_batch = mnist.train.num_examples // batch_size #计算一共有多少个批次
    
    #这里的none表示第一个维度可以是任意的长度
    x = tf.placeholder(tf.float32,[None,784])
    #正确的标签
    y = tf.placeholder(tf.float32,[None,10])
    
    #初始化权值
    weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
    #初始化偏置值
    biases = tf.Variable(tf.constant(0.1, shape=[n_classes]))
    
    
    #定义RNN网络
    def RNN(X,weights,biases):
        # inputs=[batch_size, max_time, n_inputs]
        inputs = tf.reshape(X,[-1,max_time,n_inputs])
        #定义LSTM基本CELL
        lstm_cell = tf.nn.rnn_cell.LSTMCell(lstm_size)
        #lstm_cell = tf.contrib.rnn.LSTMCell(lstm_size, name='basic_lstm_cell')
        #final_state[state, batch_size, cell.state_size]
        # final_state[0]是cell state
        # final_state[1]是hidden_state
        #outputs: The RNN output 'Tensor'
        #If time_major == False(default), this will be a 'Tensor' shaped:
        #   [batch_size, max_time, cell.output_size]
        #If time_major == True, this will be a 'Tensor' shaped:
        #   [max_time, batch_size, cell.output_size]
        outputs,final_state = tf.nn.dynamic_rnn(lstm_cell,inputs,dtype=tf.float32)
        results = tf.nn.softmax(tf.matmul(final_state[1],weights) + biases)
        return results
        
        
    #计算RNN的返回结果
    prediction= RNN(x, weights, biases)  
    #损失函数
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
    #使用AdamOptimizer进行优化
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#把correct_prediction变为float32类型
    #初始化
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(50):
            for batch in range(n_batch):
                batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
            
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
            print ("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))
    人生苦短,何不用python
  • 相关阅读:
    C#代码也VB
    Flash/Flex学习笔记(9):ActionScript3.0与Javascript的相互调用
    原来Silverlight 4中是可以玩UDP的!
    Flash/Flex学习笔记(20):贝塞尔曲线
    Flash/Flex学习笔记(16):如何做自定义Loading加载其它swf
    AS3:让人叹为观止的Flash作品
    Flash/Flex学习笔记(10):FMS 3.5之Hello World!
    Flash/Flex学习笔记(12):FMS 3.5之如何做视频实时直播
    Flash/Flex学习笔记(28):动态文本的滚动控制
    Flash/Flex学习笔记(18):画线及三角函数的基本使用
  • 原文地址:https://www.cnblogs.com/yqpy/p/11227922.html
Copyright © 2011-2022 走看看