zoukankan      html  css  js  c++  java
  • PyTorch基础

    红圈圈里的数据类型比较重要

    瞎贴一波:

    一、数据类型

    a = torch.randn(2,3)
    print(a)
    print(type(a))
    print(isinstance(a, torch.FloatTensor))#合法化检验
    print(isinstance(a, torch.cuda.FloatTensor))#合法化检验
    
    a = a.cuda()#返回一个GPU上的引用
    print(isinstance(a, torch.cuda.FloatTensor))#合法化检验
    
    >>>
    tensor([[ 1.0300, -0.7234, -0.5679],
            [-0.7928, -0.2508, -0.9085]])
    <class 'torch.Tensor'>
    True
    False
    True
    torch.tensor(1.)
    
    >>>tensor(1.)
    
    torch.tensor(1.3)
    
    >>>tensor(1.3000)
    
    
    torch.tensor([1.])
    #torch.tensor([1.])
    
    >>>tensor([1.])
    
    
    a = torch.tensor(2.2)
    a.shape
    
    >>>torch.Size([])
    
    len(a.shape)
    
    >>>0
    
    a.size()
    
    >>>torch.Size([])
    
    torch.tensor([1.1])
    
    >>>tensor([1.1000])
    
    torch.tensor([1.1,2.2])
    
    >>>tensor([1.1000, 2.2000])
    
    torch.FloatTensor(1)
    
    >>>tensor([1.4574e-43])
    
    torch.FloatTensor(2)
    
    >>>tensor([0., 0.])
    
    data = np.ones(2)
    data
    
    >>>array([1., 1.])
    
    torch.from_numpy(data)
    
    >>>tensor([1., 1.], dtype=torch.float64)
    
    a = torch.ones(2)
    a.shape
    
    >>>torch.Size([2])
    a = torch.randn(2,3)
    a
    
    >>>tensor([[ 0.5736,  0.4078, -0.8879],
            [-0.0126,  0.4756, -0.0214]])
    
    
    a.shape
    
    >>>torch.Size([2, 3])
    
    a.size(0)
    
    >>>2
    
    a.size(1)
    
    >>>3
    a = torch.rand(2,1,4,4)
    a
    
    >>>tensor([[[[0.4224, 0.5601, 0.3603, 0.7440],
              [0.2749, 0.4182, 0.5837, 0.1956],
              [0.9536, 0.9231, 0.6720, 0.4501],
              [0.0255, 0.0731, 0.7247, 0.3907]]],
    
    
            [[[0.0651, 0.7923, 0.1018, 0.3250],
              [0.7650, 0.5583, 0.5320, 0.9807],
              [0.2130, 0.2525, 0.7932, 0.0258],
              [0.7981, 0.6380, 0.1390, 0.2147]]]])
    
    
    a.numel() #元素个数
    
    >>>32
    
    a.dim()  #维度
    
    >>>4

    二、创建Tensor

    1.import from numpy,从numpy数据中载入

    a = np.array([2,3.3])
    torch.from_numpy(a)
    
    >>>tensor([2.0000, 3.3000], dtype=torch.float64)
    
    a = np.ones([2,3])
    torch.from_numpy(a)
    
    >>>tensor([[1., 1., 1.],
            [1., 1., 1.]], dtype=torch.float64)

    2.import from List,从列表类型数据中载入

    torch.tensor([2., 3.2]) #直接接受数据,经常使用,注意是小写
    >>>tensor([2.0000, 3.2000])
    
    torch.FloatTensor(4,3)#设定维度,经常使用
    >>>tensor([[0., 0., 0.],
            [0., 0., 0.],
            [0., 0., 0.],
            [0., 0., 0.]])
    
    
    torch.FloatTensor([2.,3.2]) #不轻易用,容易和小写的tensor混淆
    >>>tensor([2.0000, 3.2000])
    
    torch.IntTensor(2,3) #未初始化,数据分布差异太大
    >>>tensor([[0, 0, 1],
            [0, 1, 0]], dtype=torch.int32)
    
    torch.FloatTensor(2,3) #未初始化
    >>>tensor([[7.4715e+37, 6.6001e-43, 8.4078e-45],
            [0.0000e+00, 1.4013e-45, 0.0000e+00]])
    
    
    torch.tensor([1.2, 3]).type()
    >>>'torch.FloatTensor'    #默认情况是FloatTensor
    
    torch.set_default_tensor_type(torch.DoubleTensor)     #修改默认情况
    torch.tensor([1.2, 3]).type()
    >>>'torch.DoubleTensor' 

     3. rand/rand_like,randint

    torch.rand(3,3) #采样(0,1)之间的分布
    >>>tensor([[0.2816, 0.4244, 0.1964],
            [0.5480, 0.6377, 0.2992],
            [0.4763, 0.4480, 0.1515]])
    
    a = torch.rand(3,3) 
    torch.rand_like(a)#读出a的维度后再送到函数里
    >>>tensor([[0.4966, 0.2000, 0.9064],
            [0.8584, 0.1375, 0.7557],
            [0.2186, 0.9776, 0.8252]])
    
    torch.randint(1,10,[3,3]) #(min,max,[size[0],size[1]])
    >>>tensor([[2, 1, 7],
            [7, 7, 6],
            [8, 5, 3]])
    
    ###正态分布的采样,均值为0,方差为1
    torch.randn(3,3)
    >>>tensor([[-0.3037,  1.2203, -0.2857],
            [ 0.4289,  0.3293,  0.6834],
            [-0.5883,  0.6679, -0.1545]])
    
    torch.normal(mean=torch.full([10],0), std=torch.arange(1, 0, -0.1))
    >>>tensor([-0.1700, -1.2166,  0.0035, -0.4357, -0.0571, -0.9798, -0.1286,  0.1009,
             0.2687, -0.1457])
    
    torch.full([2,3],7)
    >>>'torch.DoubleTensor' #之前修改了默认数据类型
    
    torch.full([],7) #表示生成标量
    >>>'torch.DoubleTensor'
    
    torch.full([1],7) #生成维度为1的vector
    >>>tensor([7.])
    
    torch.arange(0,10)
    >>>tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    
    torch.arange(0,10,2)
    >>>tensor([0, 2, 4, 6, 8])
    
    torch.linspace(0,10,steps=4)
    >>>tensor([ 0.0000,  3.3333,  6.6667, 10.0000])
    
    torch.linspace(0,10,steps=10)
    >>>tensor([ 0.0000,  1.1111,  2.2222,  3.3333,  4.4444,  5.5556,  6.6667,  7.7778,
             8.8889, 10.0000])
    
    torch.linspace(0,10,steps=11)
    >>>tensor([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])
    
    torch.logspace(0,-1,steps=10) #10^0,...,10^(-1)
    >>>tensor([1.0000, 0.7743, 0.5995, 0.4642, 0.3594, 0.2783, 0.2154, 0.1668, 0.1292,
            0.1000])
    
    torch.logspace(0,1,steps=10) #10^0,...,10^1
    >>>tensor([ 1.0000,  1.2915,  1.6681,  2.1544,  2.7826,  3.5938,  4.6416,  5.9948,
             7.7426, 10.0000])
    
    torch.ones(3,3)
    >>>tensor([[1., 1., 1.],
            [1., 1., 1.],
            [1., 1., 1.]])
    
    torch.zeros(3,3)
    >>>tensor([[0., 0., 0.],
            [0., 0., 0.],
            [0., 0., 0.]])
    
    torch.eye(3,4)
    >>>tensor([[1., 0., 0., 0.],
            [0., 1., 0., 0.],
            [0., 0., 1., 0.]])
    
    a = torch.zeros(3,3)
    torch.ones_like(a) #读取tensor维度再生成
    >>>tensor([[1., 1., 1.],
            [1., 1., 1.],
            [1., 1., 1.]])

    4. shuffle方法

    a = torch.rand(2,3)
    b = torch.rand(2,2)
    a,b
    
    >>>(tensor([[0.3372, 0.5688, 0.9331],
             [0.6488, 0.4826, 0.6608]]), tensor([[0.4330, 0.8487],
             [0.0610, 0.5291]]))
    
    idx = torch.randperm(2)
    idx
    
    >>>tensor([1, 0])  #表示经过了一次shuffle,从0,1->1,0
    
    a[idx]
    >>>tensor([[0.6488, 0.4826, 0.6608],
            [0.3372, 0.5688, 0.9331]])
    
    b[idx]
    >>>tensor([[0.0610, 0.5291],
            [0.4330, 0.8487]])

    三、索引与切片

    1、给定索引号

    a = torch.rand(4,3,28,28)
    a[0].shape #第0张图
    >>>torch.Size([3, 28, 28])
    
    a[0,0].shape #第0张图,第0个通道
    >>>torch.Size([28, 28])
    
    a[0,0,2,4] #第0张图,第0个通道,第2行第4列的像素点
    >>>tensor(0.7300)
    
    a.shape
    >>>torch.Size([4, 3, 28, 28])
    
    a[:2].shape #第0,1张图
    >>>torch.Size([2, 3, 28, 28])
    
    a[:2,:1,:,:].shape #第0,1张图的第1个通道上的数据
    >>>torch.Size([2, 1, 28, 28])
    
    a[:2,1:,:,:].shape #第0,1张图的(第一个通道,末尾通道)上的数据
    >>>torch.Size([2, 2, 28, 28])
    
    a[:2,-1:,:,:].shape #第0,1张图的末尾通道的数据
    >>>torch.Size([2, 1, 28, 28])
    
    a[:,:,0:28:2,0:28:2].shape #隔行采样
    torch.Size([4, 3, 14, 14])
    
    a[:,:,::2,::2].shape #同上
    >>>torch.Size([4, 3, 14, 14])

    2、具体索引

    a.shape
    >>>torch.Size([4, 3, 28, 28])
    
    a.index_select(0,torch.tensor([0,2])).shape  
    #0表示对第一个维度,也就是图片张数进行操作,[0,2]表示第0和第2张图片
    >>>torch.Size([2, 3, 28, 28])
    
    a.index_select(1,torch.tensor([1,2])).shape
    #1表示对第二个维度,在通道数上,取第1和第2个通道,当然图片数就是全部了
    >>>torch.Size([4, 2, 28, 28])
    
    a.index_select(2, torch.arange(14)).shape
    >>>torch.Size([4, 3, 14, 28])
    
    a[...].shape #表示所有维度都取
    >>>torch.Size([4, 3, 28, 28])
    
    a[0,...,::2].shape 
    #第一个维度取0,中间一个维度全取(...表示任意多的维度),最后一个维度取步长为2 
    >>>torch.Size([3, 28, 14])
    
    a[:,1,...].shape
    >>>torch.Size([4, 28, 28])
    
    a[...,:2].shape
    >>>torch.Size([4, 3, 28, 2])
    
    ###select by mask
    x = torch.randn(3, 4)
    x
    >>>tensor([[ 1.1194, -0.5518, -0.2115, -1.4508],
            [ 1.3920,  1.0053, -1.2985, -1.2529],
            [-1.0730,  1.4239,  0.1493, -0.2288]])
    
    mask = x.ge(0.5)  #把元素大于0.5的设为1,小于0.5为0
    mask
    >>>tensor([[1, 0, 0, 0],
            [1, 1, 0, 0],
            [0, 1, 0, 0]], dtype=torch.uint8)
    
    torch.masked_select(x, mask)
    >>>tensor([1.1194, 1.3920, 1.0053, 1.4239])
    
    torch.masked_select(x, mask).shape
    >>>torch.Size([4])
    
    #select by flatten index
    src = torch.tensor([[4,3,5],
                      [6,7,8]])
    torch.take(src, torch.tensor([0,2,5]))
    >>>tensor([4, 5, 8])

     三、维度变换

    1、view/reshape

    #view和reshape
    a = torch.rand(4,1,28,28)
    a.shape
    
    >>>torch.Size([4, 1, 28, 28])
    
    a.view(4, 28*28) #把后面三个维度合并到一起,每张图片都用一个784维的向量表示
    >>>tensor([[0.1820, 0.8625, 0.2687,  ..., 0.2841, 0.4331, 0.6522],
            [0.4611, 0.7675, 0.7003,  ..., 0.9976, 0.9174, 0.2024],
            [0.7160, 0.8296, 0.7346,  ..., 0.6240, 0.6848, 0.3391],
            [0.3076, 0.6013, 0.2066,  ..., 0.2345, 0.5690, 0.2885]])
    
    
    a.view(4,28*28).shape
    >>>torch.Size([4, 784])
    
    a.view(4*28,28).shape #所有照片的所有行都放到一个行向量中
    >>>torch.Size([112, 28])
    
    a.view(4*1, 28, 28).shape #所有照片的通道数进行合并
    >>>torch.Size([4, 28, 28])
    
    b = a.view(4, 784)
    b.view(4, 1, 28, 28).shape
    >>>torch.Size([4, 1, 28, 28])

    2、unsqueeze/squeeze

    a.shape
    >>>torch.Size([4, 1, 28, 28])
    
    a.unsqueeze(0).shape #在第0维度前插入一个维度
    >>>torch.Size([1, 4, 1, 28, 28])
    
    a.unsqueeze(-1).shape #对应于4
    >>>torch.Size([4, 1, 28, 28, 1])
    
    a.unsqueeze(-4).shape #对应于1
    >>>torch.Size([4, 1, 1, 28, 28])
    
    a.unsqueeze(4).shape
    >>>torch.Size([4, 1, 28, 28, 1])
    
    a.unsqueeze(-5).shape #对应于0
    >>>torch.Size([1, 4, 1, 28, 28])

    实际数据

    a = torch.tensor([1.2,2.3])
    a.shape
    >>>torch.Size([2])
    
    a.unsqueeze(-1)   #[2] -> [2,1]
    >>>tensor([[1.2000],
            [2.3000]])
    
    a.unsqueeze(-1).shape
    >>>torch.Size([2, 1])
    
    a.unsqueeze(0)  #[2] -> [1,2]
    >>>tensor([[1.2000, 2.3000]])
    
    a.unsqueeze(0).shape
    >>>torch.Size([1, 2])
    
    #For example
    b = torch.rand(32)
    f = torch.rand(4,32,14,14)
    
    b = b.unsqueeze(1).unsqueeze(2).unsqueeze(0)
    b.shape
    >>>torch.Size([1, 32, 1, 1])

     squeeze

    b.shape
    >>>torch.Size([1, 32, 1, 1])
    
    b.squeeze().shape  #不给参数,全部解压
    >>>torch.Size([32])
    
    b.squeeze(0).shape
    >>>torch.Size([32, 1, 1])
    
    b.squeeze(-1).shape
    >>>torch.Size([1, 32, 1])
    
    b.squeeze(-1).shape
    >>>torch.Size([1, 32, 1])
    
    b.squeeze(1).shape
    >>>torch.Size([1, 32, 1, 1])
    
    b.squeeze(-4).shape
    >>>torch.Size([32, 1, 1])

    expand

    a = torch.rand(4,32,14,14)
    b.shape
    
    >>>torch.Size([1, 32, 1, 1])
    
    b.expand(4,32,14,14).shape #仅限于1->N
    >>>torch.Size([4, 32, 14, 14])
    
    b.expand(-1,32,-1,-1).shape #-1表示该维度保持不变
    >>>torch.Size([1, 32, 1, 1])
    
    b.expand(-1,32,-1,4).shape
    >>>torch.Size([1, 32, 1, 4])

    repeat#维度拷贝

    b.shape
    >>>torch.Size([1, 32, 1, 1])
    
    b.repeat(4,32,1,1).shape #每一个维度需要拷贝的次数
    >>>torch.Size([4, 1024, 1, 1])
    
    b.repeat(4,1,1,1).shape
    >>>torch.Size([4, 32, 1, 1])
    
    b.repeat(4,1,32,32).shape
    >>>torch.Size([4, 32, 32, 32])

    矩阵转置

    a = torch.randn(3,4)
    a.t() #只能用于二维
    >>>tensor([[ 1.4149, -1.2417,  0.4027],
            [-0.3130,  1.0590,  0.1123],
            [-1.3699, -0.3791, -1.0308],
            [-0.8360, -0.2011, -0.4700]])
    
    
    a = torch.randn(4, 3, 32, 32)
    
    a1 = a.transpose(1,3).contiguous().view(4,3*32*32).view(4,3,32,32)
    >>>#[b c H W] ->[b w H C] ->[b C W H]
    
    a2 = a.transpose(1,3).contiguous().view(4,3*32*32).view(4,32,32,3).transpose(1,3)
    # [b c H W] -> [b W H c] -> [b WHc] -> [b W H c] -> [b c H W]
    
    a1.shape, a2.shape
    >>>(torch.Size([4, 3, 32, 32]), torch.Size([4, 3, 32, 32]))
    
    torch.all(torch.eq(a,a1))
    >>>tensor(0, dtype=torch.uint8)
    
    torch.all(torch.eq(a,a2))
    >>>tensor(1, dtype=torch.uint8)
    a.transpose(1,3).shape
    >>>torch.Size([4, 28, 28, 3])
    
    b = torch.rand(4,3,28,32)
    b.transpose(1,3).shape
    >>>torch.Size([4, 32, 28, 3])
    
    b.transpose(1,3).transpose(1,2).shape
    >>>torch.Size([4, 28, 32, 3])
    
    b.permute(0,2,3,1).shape #直接干,[b c H W] -> [b H W c]
    >>>torch.Size([4, 28, 32, 3])
    人生苦短,何不用python
  • 相关阅读:
    启动控制面板命令大全
    C#下载网页为mht文件
    基于C#语言的可编程表达式计算器设计
    FileSystemWatcher监视文件变动
    C#梁朝伟变刘德华之山寨实现
    Json之语法,格式
    Regex类
    C# 索引器
    优化正则表达式的诀窍
    正则表达式(二) 零宽断言与懒惰匹配以及平衡组
  • 原文地址:https://www.cnblogs.com/yqpy/p/11296887.html
Copyright © 2011-2022 走看看