zoukankan      html  css  js  c++  java
  • Pytorch中的model.named_parameters()和model.parameters()

    之前一直不清楚怎么查看模型的参数和结构,现在学习了一下。

    首先搞个resnet20出来

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from torch.nn import init
    from models.res_utils import DownsampleA, DownsampleC, DownsampleD
    import math
    
    
    class ResNetBasicblock(nn.Module):
        expansion = 1
        """
        RexNet basicblock (https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua)
        """
        def __init__(self, inplanes, planes, stride=1, downsample=None):
            super(ResNetBasicblock, self).__init__()
    
            self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
            self.bn_a = nn.BatchNorm2d(planes)
    
            self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
            self.bn_b = nn.BatchNorm2d(planes)
    
            self.downsample = downsample
    
        def forward(self, x):
            residual = x
    
            basicblock = self.conv_a(x)
            basicblock = self.bn_a(basicblock)
            basicblock = F.relu(basicblock, inplace=True)
    
            basicblock = self.conv_b(basicblock)
            basicblock = self.bn_b(basicblock)
    
            if self.downsample is not None:
                residual = self.downsample(x)
        
            return F.relu(residual + basicblock, inplace=True)
    
    class CifarResNet(nn.Module):
        """
        ResNet optimized for the Cifar dataset, as specified in
        https://arxiv.org/abs/1512.03385.pdf
        """
        def __init__(self, block, depth, num_classes):
            """ Constructor
            Args:
              depth: number of layers.
              num_classes: number of classes
              base_ base width
            """
            super(CifarResNet, self).__init__()
    
            #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
            assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
            layer_blocks = (depth - 2) // 6
            print ('CifarResNet : Depth : {} , Layers for each block : {}'.format(depth, layer_blocks))
    
            self.num_classes = num_classes
    
            self.conv_1_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
            self.bn_1 = nn.BatchNorm2d(16)
    
            self.inplanes = 16
            self.stage_1 = self._make_layer(block, 16, layer_blocks, 1)
            self.stage_2 = self._make_layer(block, 32, layer_blocks, 2)
            self.stage_3 = self._make_layer(block, 64, layer_blocks, 2)
            self.avgpool = nn.AvgPool2d(8)
            self.classifier = nn.Linear(64*block.expansion, num_classes)
    
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                    m.weight.data.normal_(0, math.sqrt(2. / n))
                    #m.bias.data.zero_()
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
                elif isinstance(m, nn.Linear):
                    init.kaiming_normal(m.weight)
                    m.bias.data.zero_()
    
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample = None
            if stride != 1 or self.inplanes != planes * block.expansion:
                downsample = DownsampleA(self.inplanes, planes * block.expansion, stride)
    
            layers = []
            layers.append(block(self.inplanes, planes, stride, downsample))
            self.inplanes = planes * block.expansion
            for i in range(1, blocks):
                layers.append(block(self.inplanes, planes))
    
            return nn.Sequential(*layers)
    
        def forward(self, x):
            x = self.conv_1_3x3(x)
            x = F.relu(self.bn_1(x), inplace=True)
            x = self.stage_1(x)
            x = self.stage_2(x)
            x = self.stage_3(x)
            x = self.avgpool(x)
            x = x.view(x.size(0), -1)
            return self.classifier(x)
    
    def resnet20(num_classes=10):
        """Constructs a ResNet-20 model for CIFAR-10 (by default)
        Args:
        num_classes (uint): number of classes
        """
        model = CifarResNet(ResNetBasicblock, 20, num_classes)
        return model

    DownsampleA其实是这个东西

    class DownsampleA(nn.Module):  
    
      def __init__(self, nIn, nOut, stride):
        super(DownsampleA, self).__init__() 
        assert stride == 2    
        self.avg = nn.AvgPool2d(kernel_size=1, stride=stride)   
    
      def forward(self, x):   
        x = self.avg(x)  
        return torch.cat((x, x.mul(0)), 1)  

    所以最后网络结构是预处理的conv层和bn层,以及接下去的三个stage,每个stage分别是三层,最后是avgpool和全连接层

    1、model.named_parameters(),迭代打印model.named_parameters()将会打印每一次迭代元素的名字和param

    for name, param in net.named_parameters():
        print(name,param.requires_grad)
        param.requires_grad = False
    
    
    #
    conv_1_3x3.weight False
    bn_1.weight False
    bn_1.bias False
    stage_1.0.conv_a.weight False
    stage_1.0.bn_a.weight False
    stage_1.0.bn_a.bias False
    stage_1.0.conv_b.weight False
    stage_1.0.bn_b.weight False
    stage_1.0.bn_b.bias False
    stage_1.1.conv_a.weight False
    stage_1.1.bn_a.weight False
    stage_1.1.bn_a.bias False
    stage_1.1.conv_b.weight False
    stage_1.1.bn_b.weight False
    stage_1.1.bn_b.bias False
    stage_1.2.conv_a.weight False
    stage_1.2.bn_a.weight False
    stage_1.2.bn_a.bias False
    stage_1.2.conv_b.weight False
    stage_1.2.bn_b.weight False
    stage_1.2.bn_b.bias False
    stage_2.0.conv_a.weight False
    stage_2.0.bn_a.weight False
    stage_2.0.bn_a.bias False
    stage_2.0.conv_b.weight False
    stage_2.0.bn_b.weight False
    stage_2.0.bn_b.bias False
    stage_2.1.conv_a.weight False
    stage_2.1.bn_a.weight False
    stage_2.1.bn_a.bias False
    stage_2.1.conv_b.weight False
    stage_2.1.bn_b.weight False
    stage_2.1.bn_b.bias False
    stage_2.2.conv_a.weight False
    stage_2.2.bn_a.weight False
    stage_2.2.bn_a.bias False
    stage_2.2.conv_b.weight False
    stage_2.2.bn_b.weight False
    stage_2.2.bn_b.bias False
    stage_3.0.conv_a.weight False
    stage_3.0.bn_a.weight False
    stage_3.0.bn_a.bias False
    stage_3.0.conv_b.weight False
    stage_3.0.bn_b.weight False
    stage_3.0.bn_b.bias False
    stage_3.1.conv_a.weight False
    stage_3.1.bn_a.weight False
    stage_3.1.bn_a.bias False
    stage_3.1.conv_b.weight False
    stage_3.1.bn_b.weight False
    stage_3.1.bn_b.bias False
    stage_3.2.conv_a.weight False
    stage_3.2.bn_a.weight False
    stage_3.2.bn_a.bias False
    stage_3.2.conv_b.weight False
    stage_3.2.bn_b.weight False
    stage_3.2.bn_b.bias False
    classifier.weight False
    classifier.bias False

    并且可以更改参数的可训练属性,第一次打印是True,这是第二次,就是False了

    2、model.parameters(),迭代打印model.parameters()将会打印每一次迭代元素的param而不会打印名字,这是他和named_parameters的区别,两者都可以用来改变requires_grad的属性

    for index, param in enumerate(net.parameters()):
        print(param.shape)
    
    #
    torch.Size([16, 3, 3, 3])
    torch.Size([16])
    torch.Size([16])
    torch.Size([16, 16, 3, 3])
    torch.Size([16])
    torch.Size([16])
    torch.Size([16, 16, 3, 3])
    torch.Size([16])
    torch.Size([16])
    torch.Size([16, 16, 3, 3])
    torch.Size([16])
    torch.Size([16])
    torch.Size([16, 16, 3, 3])
    torch.Size([16])
    torch.Size([16])
    torch.Size([16, 16, 3, 3])
    torch.Size([16])
    torch.Size([16])
    torch.Size([16, 16, 3, 3])
    torch.Size([16])
    torch.Size([16])
    torch.Size([32, 16, 3, 3])
    torch.Size([32])
    torch.Size([32])
    torch.Size([32, 32, 3, 3])
    torch.Size([32])
    torch.Size([32])
    torch.Size([32, 32, 3, 3])
    torch.Size([32])
    torch.Size([32])
    torch.Size([32, 32, 3, 3])
    torch.Size([32])
    torch.Size([32])
    torch.Size([32, 32, 3, 3])
    torch.Size([32])
    torch.Size([32])
    torch.Size([32, 32, 3, 3])
    torch.Size([32])
    torch.Size([32])
    torch.Size([64, 32, 3, 3])
    torch.Size([64])
    torch.Size([64])
    torch.Size([64, 64, 3, 3])
    torch.Size([64])
    torch.Size([64])
    torch.Size([64, 64, 3, 3])
    torch.Size([64])
    torch.Size([64])
    torch.Size([64, 64, 3, 3])
    torch.Size([64])
    torch.Size([64])
    torch.Size([64, 64, 3, 3])
    torch.Size([64])
    torch.Size([64])
    torch.Size([64, 64, 3, 3])
    torch.Size([64])
    torch.Size([64])
    torch.Size([10, 64])
    torch.Size([10])

    可以看出这些参数的尺寸

  • 相关阅读:
    C#中的委托(转)
    面试总结
    int, Int32.Parse和Convert.ToInt32的不同之处(分享)
    数据结构与算法基础学习(一)
    SVN服务器搭建和使用(二)
    WCF学习笔记(第一天,1.WCF概述)
    在此计算机中仅有部分visual studio2010产品已升级到SP1,只有全部升级,产品才能正常运行解决办法
    FormsAuthentication使用指南
    Why do I get the error "The target GatherAllFilesToPublish does not exist"?
    非彼拉且数列的实现
  • 原文地址:https://www.cnblogs.com/yqpy/p/12585331.html
Copyright © 2011-2022 走看看