zoukankan      html  css  js  c++  java
  • 216. Combination Sum III

    题目:

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

    Ensure that numbers within the set are sorted in ascending order.


    Example 1:

    Input: k = 3, n = 7

    Output:

    [[1,2,4]]
    

    Example 2:

    Input: k = 3, n = 9

    Output:

    [[1,2,6], [1,3,5], [2,3,4]]
    

    链接: http://leetcode.com/problems/combination-sum-iii/

    题解: 

    Combination Sum 3,求和为n的k位组合数,输入number只有{1, 2, 3, 4, 5, 6, 7, 8, 9}并且无重复。 首先的想法是dfs + backtracking,不用花很多时间就可以写出来。

    Time Complexity - O(29),  Space Complexity - O(n) 

    public class Solution {
        public List<List<Integer>> combinationSum3(int k, int n) {
            List<List<Integer>> res = new ArrayList<>();
            List<Integer> list = new ArrayList<>();
            combinationSum3(res, list, k, n, 1);
            return res;
        }
        
        private void combinationSum3(List<List<Integer>> res, List<Integer> list, int k, int n, int pos) {
            if(n < 0 || k < 0)
                return;
            if(n == 0 && k == 0){
                res.add(new ArrayList<Integer>(list));
                return;
            }
            
            for(int i = pos; i <= 9; i++) {
                list.add(i);
                combinationSum3(res, list, k - 1, n - i, i + 1);
                list.remove(list.size() - 1);
            }
        }
    }

    还看到一个很好的写法,因为输入只有1 ~ 9,结果也只是1 ~ 9里k个数的组合那么我们可以暴力遍历所有的29个数。这里有个比较巧妙的地方就是我们只用找有k个1 bit的数字,然后再计算是否满足条件和为n。(原理我也没想明白,数学不好...)

    这样下来Time Complexity 依然是O(29), Space Complexity - O(n), 不过可以节省掉递归栈的开销。

    二刷:

    方法跟一刷基本一样。

    Java:

    Time Complexity - O(29),  Space Complexity - O(n) 

    public class Solution {
        public List<List<Integer>> combinationSum3(int k, int n) {
            List<List<Integer>> res = new ArrayList<>();
            combinationSum3(res, new ArrayList<>(), k, n, 1);
            return res;
        }
        
        private void combinationSum3(List<List<Integer>> res, List<Integer> list, int k, int n, int pos) {
            if (list.size() == k) {
                if (n == 0) res.add(new ArrayList<>(list));
                return;
            }
            for (int i = pos; i <= 9; i++) {
                if (i > n) break;
                list.add(i);
                combinationSum3(res, list, k, n - i, i + 1);
                list.remove(list.size() - 1);
            }
        }
    }

    三刷:

    Java:

    public class Solution {
        public List<List<Integer>> combinationSum3(int k, int n) {
            List<List<Integer>> res = new ArrayList<>();
            combinationSum3(res, new ArrayList<>(), k, n, 1);
            return res;
        }
        
        private void combinationSum3(List<List<Integer>> res, List<Integer> list, int k, int n, int pos) {if (k == 0) {
                if (n == 0) res.add(new ArrayList<>(list));
                return;
            }
            for (int i = pos; i <= 9; i++) {
                if (i > n) return;
                list.add(i);
                combinationSum3(res, list, k - 1, n - i, i + 1);
                list.remove(list.size() - 1);
            }
        }
    }

    Reference:

    https://leetcode.com/discuss/37036/my-java-solution-basic-recursion-with-backtracking

    https://leetcode.com/discuss/37809/accepted-recursive-java-solution-easy-to-understand

    https://leetcode.com/discuss/37077/just-iterate-all-combinations-of-c-n-k-no-dfs

    https://leetcode.com/discuss/7181/what-time-complexity-recursive-solution-this-problem-how-get

  • 相关阅读:
    在消息框中添加帮助按钮
    如何隐藏一个窗口在任务栏
    不透明的形式在c#中
    实现观察者模式在一个非常简单的例子
    更新使用回调模态对话框的内容
    检查Windows应用程序的现有实例,并设置MDI子程序的MDI父窗体
    更改对话框内容的简单方法
    MSIUninstaller.exe(控制台应用程序)
    启用或禁用控制更有效的和有效的方式
    一个c++ OCX,用于在应用程序的任何窗口上绘图
  • 原文地址:https://www.cnblogs.com/yrbbest/p/4982868.html
Copyright © 2011-2022 走看看