zoukankan      html  css  js  c++  java
  • POJ 2115 C Looooops

                                                                C Looooops
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Submit Status

    Description

    A Compiler Mystery: We are given a C-language style for loop of type
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop.

    The input is finished by a line containing four zeros.

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate.

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    考察扩展欧几里得算法:
    #include <stdio.h>
    #include <math.h>
    
    long long extended_euclid(long long a, long long b, long long &x, long long &y )
    {
    	if(b==0)
    	{
    		x=1;
    		y=0;
    		return a;     //d=a,x=1,y=0,此时等式d=ax+by成立
    	}
    	int d=extended_euclid(b, a%b, x, y );
    	int xt=x;
    	x=y;
    	y=xt-a/b*y;
    	return d;
    }
    
    
    int main()
    {
    	int A, B, C, k;
    	long long a, b, c;
    	long long n;
    
    	while(scanf("%d %d %d %d", &A, &B, &C, &k)!=EOF)
    	{
    	    if(A==0 && B==0 && C==0 && k==0)
    	        break;
    		n=1;
    		for(int i=1; i<=k; i++)
    		{
    			n=n*2;
    		}
    		a=C;
    		b=B-A;
    		long long x, y;
            long long d=extended_euclid (a, n, x, y );
    
    		if(b%d!=0) //无解
    		{
    			printf("FOREVER
    ");
    			continue ;
    		}
            x=(x*(b/d))%n;
            x=(x%(n/d)+n/d)%(n/d);
    
    		printf("%lld
    ", x);
    	}
    	return 0;
    }
    

     别人写的的代码+解析:

      

    #include<iostream>  
    using namespace std;  
      
    //d=ax+by,其中最大公约数d=gcd(a,n),x、y为方程系数,返回值为d、x、y  
    __int64 EXTENDED_EUCLID(__int64 a,__int64 b,__int64& x,__int64& y)  
    {  
        if(b==0)  
        {  
            x=1;  
            y=0;  
            return a;  //d=a,x=1,y=0,此时等式d=ax+by成立  
        }  
        __int64 d=EXTENDED_EUCLID(b,a%b,x,y);  
        __int64 xt=x;  
        x=y;  
        y=xt-a/b*y;  //系数x、y的取值是为满足等式d=ax+by  
        return d;  
    }  
      
    int main(void)  
    {  
        __int64 A,B,C,k;  
        while(scanf("%I64d %I64d %I64d %I64d",&A,&B,&C,&k))  
        {  
            if(!A && !B && !C && !k)  
                break;  
      
            __int64 a=C;  
            __int64 b=B-A;  
            __int64 n=(__int64)1<<k;  //2^k  
            __int64 x,y;  
            __int64 d=EXTENDED_EUCLID(a,n,x,y);  //求a,n的最大公约数d=gcd(a,n)和方程d=ax+by的系数x、y  
      
            if(b%d!=0)  //方程 ax=b(mod n) 无解  
                cout<<"FOREVER"<<endl;  
            else  
            {  
                x=(x*(b/d))%n;  //方程ax=b(mod n)的最小解  
                x=(x%(n/d)+n/d)%(n/d);  //方程ax=b(mod n)的最整数小解  
                printf("%I64d
    ",x);  
            }  
        }  
        return 0;  
    }  
    
    
    
  • 相关阅读:
    《架构整洁之道》阅读笔记
    设计模式——单例模式
    设计模式——工厂模式使用
    记一次同事安装我自定义一Python3 SDK在window10安装失败情况
    CentOS7常用的一些命令
    Java
    Java
    Java
    Java
    python
  • 原文地址:https://www.cnblogs.com/yspworld/p/3897889.html
Copyright © 2011-2022 走看看