zoukankan      html  css  js  c++  java
  • 逻辑回归&线性支持向量机

     代码:

     1 # -*- coding: utf-8 -*-
     2 """
     3 Created on Tue Jul 17 10:13:20 2018
     4 
     5 @author: zhen
     6 """
     7 
     8 from sklearn.linear_model import LogisticRegression
     9 from sklearn.svm import LinearSVC
    10 import mglearn
    11 import matplotlib.pyplot as plt
    12 
    13 x, y = mglearn.datasets.make_forge()
    14 
    15 fig, axes = plt.subplots(1, 2, figsize=(10,3))
    16 # 线性支持向量机与逻辑回归进行比较
    17 for model, ax in zip([LinearSVC(), LogisticRegression()], axes):
    18     clf = model.fit(x, y)
    19     mglearn.plots.plot_2d_separator(clf, x, fill=False, eps=0.5, ax=ax, alpha=0.7)
    20     mglearn.discrete_scatter(x[:, 0], x[:, 1], y, ax=ax)
    21     ax.set_title("{}".format(clf.__class__.__name__))
    22     ax.set_xlabel("Feature 0")
    23     ax.set_ylabel("Feature 1")
    24 axes[0].legend()
    25 
    26 # 
    27 from sklearn.datasets import load_breast_cancer
    28 from sklearn.model_selection import train_test_split
    29 cancer = load_breast_cancer()
    30 
    31 x_train, x_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, random_state=42)
    32 # 使用默认配置参数 
    33 log_reg = LogisticRegression().fit(x_train, y_train)
    34 
    35 print("="*25+"逻辑回归(C=1)"+"="*25)
    36 print("Training set score:{:.3f}".format(log_reg.score(x_train, y_train)))
    37 print("Test set score:{:.3f}".format(log_reg.score(x_test, y_test)))
    38 
    39 # 使用配置参数C=100
    40 log_reg_100 = LogisticRegression(C=100).fit(x_train, y_train)
    41 
    42 print("="*25+"逻辑回归(C=100)"+"="*25)
    43 print("Training set score:{:.3f}".format(log_reg_100.score(x_train, y_train)))
    44 print("Test set score:{:.3f}".format(log_reg_100.score(x_test, y_test)))
    45 
    46 # 使用配置参数C=0.01
    47 log_reg_001 = LogisticRegression(C=0.01).fit(x_train, y_train)
    48 
    49 print("="*25+"逻辑回归(C=0.01)"+"="*25)
    50 print("Training set score:{:.3f}".format(log_reg_001.score(x_train, y_train)))
    51 print("Test set score:{:.3f}".format(log_reg_001.score(x_test, y_test)))
    52 print("="*25+"逻辑回归&线性支持向量机"+"="*25)
    53 # 可视化
    54 fig, axes = plt.subplots(1, 1, figsize=(10,3))
    55 plt.plot(log_reg.coef_.T, 'o', label="C=1")
    56 plt.plot(log_reg_100.coef_.T, '^', label="C=100")
    57 plt.plot(log_reg_001.coef_.T, 'v', label="C=0.01")
    58 plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
    59 plt.hlines(0, 0, cancer.data.shape[1])
    60 
    61 plt.ylim(-5, 5)
    62 
    63 plt.xlabel("Cofficient indes")
    64 plt.ylabel("Cofficient magnitude")
    65 
    66 plt.legend()

    结果:

  • 相关阅读:
    Running ASP.NET Applications in Debian and Ubuntu using XSP and Mono
    .net extjs 封装
    ext direct spring
    install ubuntu tweak on ubuntu lts 10.04,this software is created by zhouding
    redis cookbook
    aptana eclipse plugin install on sts
    ubuntu open folderpath on terminal
    ubuntu install pae for the 32bit system 4g limited issue
    EXT Designer 正式版延长使用脚本
    用 Vagrant 快速建立開發環境
  • 原文地址:https://www.cnblogs.com/yszd/p/9323237.html
Copyright © 2011-2022 走看看